Investigation of Ring Rolling Key Parameters for Decreasing Geometrical Ring Defects by 3D Finite Element and Experiments

Author(s):  
Hosein Zayadi ◽  
Ali Parvizi ◽  
Hamid Reza Farahmand ◽  
Davood Rahmatabadi
2011 ◽  
Vol 189-193 ◽  
pp. 2092-2095
Author(s):  
Min Wang

For ring rolling without axial rolls, how to effectively suppress axial spread has become an important subject. In the paper, a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model for hot rolling of large rings is developed. Spread evolution of titanium alloy large rings with different sizes are explored and compared based the developed model. The main results show that (1) the spread in a ring takes on an axisymmetric distribution after the first revolution of the ring. (2) with the equivalent ratio of feed amount per revolution decreasing, the peak spread transfers from the outer layer to the inner layer for rings with different sizes.


2019 ◽  
Vol 13 (2) ◽  
pp. 181-188
Author(s):  
Meng Liu ◽  
Guohe Li ◽  
Xueli Zhao ◽  
Xiaole Qi ◽  
Shanshan Zhao

Background: Finite element simulation has become an important method for the mechanism research of metal machining in recent years. Objective: To study the cutting mechanism of hardened 45 steel (45HRC), and improve the processing efficiency and quality. Methods: A 3D oblique finite element model of traditional turning of hardened 45 steel based on ABAQUS was established in this paper. The feasibility of the finite element model was verified by experiment, and the influence of cutting parameters on cutting force was predicted by single factor experiment and orthogonal experiment based on simulation. Finally, the empirical formula of cutting force was fitted by MATLAB. Besides, a lot of patents on 3D finite element simulation for metal machining were studied. Results: The results show that the 3D oblique finite element model can predict three direction cutting force, the 3D chip shape, and other variables of metal machining and the prediction errors of three direction cutting force are 5%, 9.02%, and 8.56%. The results of single factor experiment and orthogonal experiment are in good agreement with similar research, which shows that the model can meet the needs for engineering application. Besides, the empirical formula and the prediction results of cutting force are helpful for the parameters optimization and tool design. Conclusion: A 3D oblique finite element model of traditional turning of hardened 45 steel is established, based on ABAQUS, and the validation is carried out by comparing with experiment.


2021 ◽  
Vol 62 ◽  
pp. 302-312
Author(s):  
Ninggang Shen ◽  
Avik Samanta ◽  
Wayne W. Cai ◽  
Teresa Rinker ◽  
Blair Carlson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document