3d finite element analysis
Recently Published Documents


TOTAL DOCUMENTS

399
(FIVE YEARS 110)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Daniel A. Faria Almeida ◽  
Fellippo R. Verri ◽  
Cleidiel A. A. Lemos ◽  
Victor E. Souza Batista ◽  
Joel. F. Santiago Júnior ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3863
Author(s):  
Joseph Assaf ◽  
Louis Hardan ◽  
Cynthia Kassis ◽  
Rim Bourgi ◽  
Walter Devoto ◽  
...  

The mechanical properties and the thickness of the resin cement agents used for bonding inlay bridges can modify the clinical performance of the restoration such as debonding or prosthetic materials fracture. Thus, the aim of this study was to evaluate the stress distribution and the maximum strain generated by resin cements with different elastic moduli and thicknesses used to cement resin-bonded fixed partial denture (RBFPD). A three-dimensional (3D) finite element analysis (FEA) was used, and a 3D model was created based on a Cone-Beam Computed Tomography system (CBCT). The model was analyzed by the Ansys software. The model fixation occurred at the root of the abutment teeth and an axial load of 300 N was applied on the occlusal surface of the pontic. The highest stress value was observed for the Variolink 0.4 group (1.76 × 106 Pa), while the lowest was noted for the Panavia 0.2 group (1.07 × 106 Pa). Furthermore, the highest total deformation value was found for the Variolink 0.2 group (3.36 × 10−4 m), while the lowest was observed for the Panavia 0.4 group (2.33 × 10−4 m). By means of this FEA, 0.2 mm layer Panavia F2.0 seemed to exhibit a more favorable stress distribution when used for cementation of posterior zirconium-dioxide-based RBFPD. However, both studied materials possessed clinically acceptable properties.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Priyank Rai ◽  
Dhiraj Garg ◽  
Tulika Tripathi ◽  
Anup Kanase ◽  
Gayatri Ganesh

Abstract Background Although, the outcomes and changes in the maxillofacial complex after the application of intraoral bone anchored Class III elastics, have been reported by multiple clinical studies, there was no finite element study to assess and evaluate the stress pattern and displacement on maxillomandibular complex with bimaxillary anchorage. The present study aims to evaluate the biomechanical effects on maxillomandibular complex of Skeletally anchored Class III elastics with varying angulations using the 3D finite element analysis. Methodology Two 3-dimensional analytical models were developed using the Mimics 8.11 (Materialise: Leuven, Belgium) and ANSYS software Version 12.1 (ANSYS Inc, Canonsburg, PA, USA) from sequential computed tomography images taken from a Skeletal Class III subject. The models were meshed into 465,091 tetrahedral elements and 101,247 nodes. Intraoral mechanics for skeletally anchored maxillary protraction (I-SAMP) were applied on two models i.e. A and B (without and with maxillary expansion respectively) between miniplates on maxilla and mandible on both right and left sides with three different angulations of forces—10°, 20° and 30°). Results Although the craniomaxillary complex in both the models (A and B) displaced forward while demonstrating rotations in opposite directions, the displacements and rotations decreased gradually with the increase of the angle of load application from 10° to 30°. The mandible rotated clockwise in both the simulations, but the displacement of mandibular surface landmarks was higher in Simulation A. However, the antero-inferior displacement of the glenoid fossa was higher in Simulation B than in A. Conclusion Significant displacement of maxillofacial sutures and structures was witnessed with I-SAMP with maxillary expansion and Class III elastics for correction of Skeletal Class III with maxillary retrognathism. Thus, I-SAMP with maxillary expansion is a desired protocol for treatment of maxillary retrognathism. However, the prescribed angulation of the Class III elastics should be as low as possible to maximise the desired effects.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiahui He ◽  
Ziting Zheng ◽  
Min Wu ◽  
Chunqing Zheng ◽  
Yuting Zeng ◽  
...  

Abstract Purpose This study aimed to evaluate the influence of different types of restorative materials and resin cements on the stress distribution in the regions of the restoration, cement layer and dental remnant in endodontically treated posterior endocrowns. Methods A 3D finite element analysis (FEA) model of the first mandibular molar that was restored with an endocrown designed by computer-aided design (CAD) software was generated. Three kinds of restorative materials (Vita Enamic (VE), IPS e.max CAD (EMX) and Grandio blocs (GR)) and two types of cementing materials (NX3 and Maxcem Elite Chroma (MX)) were analysed with such a model. The food layer was also designed before vertical (600 N) forces were applied to simulate physiological masticatory conditions. Thermal expansion was used to simulate the polymerization shrinkage effects of cement layers. The results were obtained by colorimetric graphs of the maximum principal stress in the restoration and tooth remnant. The failure risk of the cement layer was also calculated based on the normal stress. Results The elastic modulus was positively correlated with the tensile stress peak values in the restoration, mainly at the intaglio surface. However, in the cervical enamel and cement layer, restorative material with a higher elastic modulus generated lower peak stress values. The cement with a higher elastic modulus resulted in higher stress peak values inside the cement layer. The combination of EMX (restorative material) and NX3 (cement material) in the cement layer resulted in the lowest failure risk. Significance The ceramic material EMX with a higher elastic modulus appeared to be more effective at protecting the cement layer and residual enamel tissue. Based on the analysis of the failure risk of the cement layer, the combination of EMX and NX3 was recommended as an optional material for endocrowns for endodontically treated posterior teeth.


Sign in / Sign up

Export Citation Format

Share Document