A Global Path Planning Algorithm for Mobile Robot in Cluttered Environments with an Improved Initial Cost Solution and Convergence Rate

Author(s):  
Sivasankar Ganesan ◽  
Senthil Kumar Natarajan ◽  
Jeevaanand Srinivasan
2021 ◽  
Vol 11 (16) ◽  
pp. 7378
Author(s):  
Hongchao Zhuang ◽  
Kailun Dong ◽  
Yuming Qi ◽  
Ning Wang ◽  
Lei Dong

In order to effectively solve the inefficient path planning problem of mobile robots traveling in multiple destinations, a multi-destination global path planning algorithm is proposed based on the optimal obstacle value. A grid map is built to simulate the real working environment of mobile robots. Based on the rules of the live chess game in Go, the grid map is optimized and reconstructed. This grid of environment and the obstacle values of grid environment between each two destination points are obtained. Using the simulated annealing strategy, the optimization of multi-destination arrival sequence for the mobile robot is implemented by combining with the obstacle value between two destination points. The optimal mobile node of path planning is gained. According to the Q-learning algorithm, the parameters of the reward function are optimized to obtain the q value of the path. The optimal path of multiple destinations is acquired when mobile robots can pass through the fewest obstacles. The multi-destination path planning simulation of the mobile robot is implemented by MATLAB software (Natick, MA, USA, R2016b) under multiple working conditions. The Pareto numerical graph is obtained. According to comparing multi-destination global planning with single-destination path planning under the multiple working conditions, the length of path in multi-destination global planning is reduced by 22% compared with the average length of the single-destination path planning algorithm. The results show that the multi-destination global path planning method of the mobile robot based on the optimal obstacle value is reasonable and effective. Multi-destination path planning method proposed in this article is conducive to improve the terrain adaptability of mobile robots.


Author(s):  
Dayal R. Parhi ◽  
Animesh Chhotray

PurposeThis paper aims to generate an obstacle free real time optimal path in a cluttered environment for a two-wheeled mobile robot (TWMR).Design/methodology/approachThis TWMR resembles an inverted pendulum having an intermediate body mounted on a robotic mobile platform with two wheels driven by two DC motors separately. In this article, a novel motion planning strategy named as DAYANI arc contour intelligent technique has been proposed for navigation of the two-wheeled self-balancing robot in a global environment populated by obstacles. The developed new path planning algorithm evaluates the best next feasible point of motion considering five weight functions from an arc contour depending upon five separate navigational parameters.FindingsAuthenticity of the proposed navigational algorithm has been demonstrated by computing the path length and time taken through a series of simulations and experimental verifications and the average percentage of error is found to be about 6%.Practical implicationsThis robot dynamically stabilizes itself with taller configuration, can spin on the spot and rove along through obstacles with smaller footprints. This diversifies its areas of application to both indoor and outdoor environments especially with very narrow spaces, sharp turns and inclined surfaces where its multi-wheel counterparts feel difficult to perform.Originality/valueA new obstacle avoidance and path planning algorithm through incremental step advancement by evaluating the best next feasible point of motion has been established and verified through both experiment and simulation.


Sign in / Sign up

Export Citation Format

Share Document