In this study, an effective local minima detection and definition algorithm is introduced for a mobile robot navigating through unknown static environments. Furthermore, five approaches are presented and compared with the popular approach wall-following to pull the robot out of the local minima enclosure namely; Random Virtual Target, Reflected Virtual Target, Global Path Backtracking, Half Path Backtracking, and Local Path Backtracking. The proposed approaches mainly depend on changing the target location temporarily to avoid the original target’s attraction force effect on the robot. Moreover, to avoid getting trapped in the same location, a virtual obstacle is placed to cover the local minima enclosure. To include the most common shapes of deadlock situations, the proposed approaches were evaluated in four different environments; V-shaped, double U-shaped, C-shaped, and cluttered environments. The results reveal that the robot, using any of the proposed approaches, requires fewer steps to reach the destination, ranging from 59 to 73 m on average, as opposed to the wall-following strategy, which requires an average of 732 m. On average, the robot with a constant speed and reflected virtual target approach takes 103 s, whereas the identical robot with a wall-following approach takes 907 s to complete the tasks. Using a fuzzy-speed robot, the duration for the wall-following approach is greatly reduced to 507 s, while the reflected virtual target may only need up to 20% of that time. More results and detailed comparisons are embedded in the subsequent sections.