A new efficient class of estimators of finite population mean in simple random sampling

2019 ◽  
Vol 31 (3-4) ◽  
pp. 595-607 ◽  
Author(s):  
Surya K. Pal ◽  
Housila P. Singh ◽  
Ramkrishna S. Solanki
PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246947
Author(s):  
Sohail Ahmad ◽  
Muhammad Arslan ◽  
Aamna Khan ◽  
Javid Shabbir

In this paper, we propose a generalized class of exponential type estimators for estimating the finite population mean using two auxiliary attributes under simple random sampling and stratified random sampling. The bias and mean squared error (MSE) of the proposed class of estimators are derived up to first order of approximation. Both empirical study and theoretical comparisons are discussed. Four populations are used to support the theoretical findings. It is observed that the proposed class of estimators perform better as compared to all other considered estimator in simple and stratified random sampling.


2017 ◽  
Vol 88 (5) ◽  
pp. 920-934 ◽  
Author(s):  
Surya K. Pal ◽  
Housila P. Singh ◽  
Sunil Kumar ◽  
Kiranmoy Chatterjee

2020 ◽  
Vol 16 (1) ◽  
pp. 61-75
Author(s):  
S. Baghel ◽  
S. K. Yadav

AbstractThe present paper provides a remedy for improved estimation of population mean of a study variable, using the information related to an auxiliary variable in the situations under Simple Random Sampling Scheme. We suggest a new class of estimators of population mean and the Bias and MSE of the class are derived upto the first order of approximation. The least value of the MSE for the suggested class of estimators is also obtained for the optimum value of the characterizing scaler. The MSE has also been compared with the considered existing competing estimators both theoretically and empirically. The theoretical conditions for the increased efficiency of the proposed class, compared to the competing estimators, is verified using a natural population.


2021 ◽  
Vol 17 (2) ◽  
pp. 75-90
Author(s):  
B. Prashanth ◽  
K. Nagendra Naik ◽  
R. Salestina M

Abstract With this article in mind, we have found some results using eigenvalues of graph with sign. It is intriguing to note that these results help us to find the determinant of Normalized Laplacian matrix of signed graph and their coe cients of characteristic polynomial using the number of vertices. Also we found bounds for the lowest value of eigenvalue.


Sign in / Sign up

Export Citation Format

Share Document