Optimal operation of a micro-grid containing energy resources and demand response program

2017 ◽  
Vol 15 (10) ◽  
pp. 2169-2182 ◽  
Author(s):  
E. Jafari ◽  
S. Soleymani ◽  
B. Mozafari ◽  
T. Amraee
Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6052
Author(s):  
Ho-Sung Ryu ◽  
Mun-Kyeom Kim

Owing to the increasing utilization of renewable energy resources, distributed energy resources (DERs) become inevitably uncertain, and microgrid operators have difficulty in operating the power systems because of this uncertainty. In this study, we propose a two-stage optimization approach with a hybrid demand response program (DRP) considering a risk index for microgrids (MGs) under uncertainty. The risk-based hybrid DRP is presented to reduce both operational costs and uncertainty effect using demand response elasticity. The problem is formulated as a two-stage optimization that considers not only the expected operation costs but also risk expense of uncertainty. To address the optimization problem, an improved multi-layer artificial bee colony (IML-ABC) is incorporated into the MG operation. The effectiveness of the proposed approach is demonstrated through a numerical analysis based on a typical low-voltage grid-connected MG. As a result, the proposed approach can reduce the operation costs which are taken into account uncertainty in MG. Therefore, the two-stage optimal operation considering uncertainty has been sufficiently helpful for microgrid operators (MGOs) to make risk-based decisions.


Energy ◽  
2019 ◽  
Vol 185 ◽  
pp. 274-285 ◽  
Author(s):  
Houman Jamshidi Monfared ◽  
Ahmad Ghasemi ◽  
Abdolah Loni ◽  
Mousa Marzband

Author(s):  
Guillermo C. Zuniga-Neria ◽  
Fernando Ornelas-Tellez ◽  
J. Jesus Rico ◽  
Edgar N. Sanchez

2018 ◽  
Vol 40 (1) ◽  
pp. 47-74 ◽  
Author(s):  
Amirhossein Eshraghi ◽  
Gholamreza Salehi ◽  
Seyedmohammadreza Heibati ◽  
Kamran Lari

A model for operating an energy hub-based multiple energy generation micro-grid is optimized using the demand response program. The optimized objective model is validated against energy demand of a residential building in Tehran, Iran. The mathematical model and optimal analysis of the proposed tri-generation micro-grid are implemented by using a real-world modelling and considering the constraints of the storage system, demand response program and the performance of the devices and the power and gas grids. The dynamic optimal operation model is prepared on the basis of the mixed integer linear programming on the subsequent day and is solved to minimize the costs of energy supply. To demonstrate the improvements, different scenarios are developed so that the renewable energy resources and storages are fed into the combined cool, heat and power system gradually. The results reveal that the inclusion of each element results in a significant improvement in the operational parameters of the micro energy grid. Scenario 1 includes a combined cool, heat and power system alone, Scenario 2 is supplemented with renewable wind and solar energy resources in addition to combined cool, heat and power system and Scenario 3 includes electrical, heat and cold storages in addition to combined cool, heat and power system and renewable energy sources. Scenario 4 is similar to Scenario 3 in terms of equipment, but the only difference lies in the use of the demand response program in the former. Total operational cost is 12.7% lower in Scenario 2 than in Scenario 1, 9.2% lower in Scenario 3 than in Scenario 2 and 8.6% lower in Scenario 4 than in Scenario 3. Practical application: An optimized operation method is prepared for combined cool, heat and power systems running in different operation modes in which renewable energy sources and storages are added to the combined cool, heat and power and the demand response program is applied. The results reveal that the cost of energy supply, including the cost of electricity, gas and pollutant emissions, is reduced and the qualitative parameters of the operation, including efficiency and reliability of building micro-grid, are increased. The proposed algorithm and the evaluation method will enable building operators to plan demand response activity on the residential building in Tehran, while this can be extended to other buildings too.


Sign in / Sign up

Export Citation Format

Share Document