Hydromagnetic Stagnation Point Flow and Heat Transfer of Particle Suspended Fluid Towards a Radially Stretching Sheet with Heat Generation

Author(s):  
Adnan Saeed Butt ◽  
Asif Ali ◽  
Ahmer Mehmood
2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Hazem Ali Attia ◽  
Karem Mahmoud Ewis ◽  
Mostafa A. M. Abdeen

An analysis is made of the steady laminar axisymmetric stagnation point flow of an incompressible viscous fluid in a porous medium impinging on a permeable radially stretching sheet with heat generation or absorption. A uniform suction or blowing is applied normal to the plate which is maintained at a constant temperature. Similarity transformation is used to transform the governing partial differential equations to ordinary differential equations. The finite difference method and generalized Thomas algorithm are used to solve the governing nonlinear momentum and energy equations. The effects of the uniform suction/blowing velocity, the stretching parameter and the heat generation/absorption coefficient on both the flow field and heat transfer are presented and discussed. The results indicate that increasing the stretching parameter or the suction/blowing velocity decreases both the velocity and thermal boundary layer thicknesses. The effect of the stretching parameter on the velocity components is more apparent for suction than blowing while its effect on the temperature and rate of heat transfer at the wall is clearer in the case of blowing than suction.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
M. R. Mohaghegh ◽  
Asghar B. Rahimi

The steady three-dimensional stagnation-point flow and heat transfer of a dusty fluid toward a stretching sheet is investigated by using similarity solution approach. The freestream along z-direction impinges on the stretching sheet to produce a flow with different velocity components. The governing equations are transformed into ordinary differential equations by introducing appropriate similarity variables and an exact solution is obtained. The nonlinear ordinary differential equations are solved numerically using Runge–Kutta fourth-order method. The effects of the physical parameters like velocity ratio, fluid and thermal particle interaction parameter, ratio of freestream velocity parameter to stretching sheet velocity parameter, Prandtl number, and Eckert number on the flow field and heat transfer characteristics are obtained, illustrated graphically, and discussed. Also, a comparison of the obtained numerical results is made with two-dimensional cases existing in the literature and good agreement is approved. Moreover, it is found that the heat transfer coefficient and shear stress on the surface for axisymmetric case are larger than nonaxisymmetric case. Also, for stationary flat plat case, a similarity solution is presented and a comparison of the obtained results is made with previously published results and full agreement is reported.


Sign in / Sign up

Export Citation Format

Share Document