scholarly journals On measure algebras associated to locally compact groups

Author(s):  
Carlos C. Peña ◽  
Ana L. Barrenechea

AbstractWe shall consider measure algebras associated to locally compact groups, bounded operators between them and properties of the underlying measures. We take into account the second dual of measure algebras provided with the Arens products together with tools of Gélfand theory.

Author(s):  
Anthony To-Ming Lau ◽  
Ali ÜLger

Abstract Based on Katznelson–Tzafriri Theorem on power bounded operators, we prove in this paper a theorem, which applies to the most of the classical Banach algebras of harmonic analysis associated with locally compact groups, to deal with the problems when a given Banach algebra A is Arens regular and when A is an ideal in its bidual. In the second part of the paper, we study the topological center of the bidual of a class of Banach algebras with a multiplier bounded approximate identity.


2007 ◽  
Vol 89 (3) ◽  
pp. 237-242 ◽  
Author(s):  
F. Abtahi ◽  
R. Nasr-Isfahani ◽  
A. Rejali

Author(s):  
Klaus Thomsen

SynopsisWe consider automorphic actions on von Neumann algebras of a locally compact group E given as a topological extension 0 → A → E → G → 0, where A is compact abelian and second countable. Motivated by the wish to describe and classify ergodic actions of E when G is finite, we classify (up to conjugacy) first the ergodic actions of locally compact groups on finite-dimensional factors and then compact abelian actions with the property that the fixed-point algebra is of type I with atomic centre. We then handle the case of ergodic actions of E with the property that the action is already ergodic when restricted to A, and then, as a generalisation, the case of (not necessarily ergodic) actions of E with the property that the restriction to A is an action with abelian atomic fixed-point algebra. Both these cases are handled for general locally compact-countable G. Finally, we combine the obtained results to classify the ergodic actions of E when G is finite, provided that either the extension is central and Hom (G, T) = 0, or G is abelian and either cyclic or of an order not divisible by a square.


2021 ◽  
Vol 390 ◽  
pp. 107894
Author(s):  
Wolfgang Herfort ◽  
Karl H. Hofmann ◽  
Francesco G. Russo

Sign in / Sign up

Export Citation Format

Share Document