scholarly journals A presmooth estimator of unbiased distributions with length-biased data

2019 ◽  
Vol 13 (4) ◽  
pp. 317-323
Author(s):  
Reza Heidari ◽  
Vahid Fakoor ◽  
Ali Shariati

Abstract In this paper, we propose a presmooth product-limit estimator to draw statistical inference on the unbiased distribution function representing the population of interest. The strong consistency of the estimator proposed is investigated. The finite sample performance of the proposed estimator is evaluated using simulation studies. It is observed that the proposed estimator exhibits greater efficiency in comparison with the alternative method in de Uña-Álvarez (Test 11(1):109–125, 2002).

1975 ◽  
Vol 12 (S1) ◽  
pp. 67-87 ◽  
Author(s):  
Paul Meier

The product-limit estimator for a distribution function, appropriate to observations which are variably censored, was introduced by Kaplan and Meier in 1958; it has provided a basis for study of more complex problems by Cox and by others. Its properties in the case of random censoring have been studied by Efron and later writers. The basic properties of the product-limit estimator are here shown to be closely parallel to the properties of the empirical distribution function in the general case of variably and arbitrarily censored observations.


Biometrika ◽  
2020 ◽  
Author(s):  
Zhenhua Lin ◽  
Jane-Ling Wang ◽  
Qixian Zhong

Summary Estimation of mean and covariance functions is fundamental for functional data analysis. While this topic has been studied extensively in the literature, a key assumption is that there are enough data in the domain of interest to estimate both the mean and covariance functions. In this paper, we investigate mean and covariance estimation for functional snippets in which observations from a subject are available only in an interval of length strictly (and often much) shorter than the length of the whole interval of interest. For such a sampling plan, no data is available for direct estimation of the off-diagonal region of the covariance function. We tackle this challenge via a basis representation of the covariance function. The proposed estimator enjoys a convergence rate that is adaptive to the smoothness of the underlying covariance function, and has superior finite-sample performance in simulation studies.


2021 ◽  
pp. 1-47
Author(s):  
Qianqian Zhu ◽  
Guodong Li

Many financial time series have varying structures at different quantile levels, and also exhibit the phenomenon of conditional heteroskedasticity at the same time. However, there is presently no time series model that accommodates both of these features. This paper fills the gap by proposing a novel conditional heteroskedastic model called “quantile double autoregression”. The strict stationarity of the new model is derived, and self-weighted conditional quantile estimation is suggested. Two promising properties of the original double autoregressive model are shown to be preserved. Based on the quantile autocorrelation function and self-weighting concept, three portmanteau tests are constructed to check the adequacy of the fitted conditional quantiles. The finite sample performance of the proposed inferential tools is examined by simulation studies, and the need for use of the new model is further demonstrated by analyzing the S&P500 Index.


2015 ◽  
Vol 26 (4) ◽  
pp. 1912-1924 ◽  
Author(s):  
Jeong Youn Lim ◽  
Jong-Hyeon Jeong

We propose a cause-specific quantile residual life regression where the cause-specific quantile residual life, defined as the inverse of the cumulative incidence function of the residual life distribution of a specific type of events of interest conditional on a fixed time point, is log-linear in observable covariates. The proposed test statistic for the effects of prognostic factors does not involve estimation of the improper probability density function of the cause-specific residual life distribution under competing risks. The asymptotic distribution of the test statistic is derived. Simulation studies are performed to assess the finite sample properties of the proposed estimating equation and the test statistic. The proposed method is illustrated with a real dataset from a clinical trial on breast cancer.


Sign in / Sign up

Export Citation Format

Share Document