Fractional Gegenbauer wavelets operational matrix method for solving nonlinear fractional differential equations

2021 ◽  
Vol 15 (1) ◽  
pp. 83-97
Author(s):  
Umer Saeed ◽  
Mujeeb ur Rehman ◽  
Khurram Javid ◽  
Qamar Din ◽  
Sajjad Haider
Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 238 ◽  
Author(s):  
Aydin Secer ◽  
Selvi Altun

This paper introduces a new numerical approach to solving a system of fractional differential equations (FDEs) using the Legendre wavelet operational matrix method (LWOMM). We first formulated the operational matrix of fractional derivatives in some special conditions using some notable characteristics of Legendre wavelets and shifted Legendre polynomials. Then, the system of fractional differential equations was transformed into a system of algebraic equations by using these operational matrices. At the end of this paper, several examples are presented to illustrate the effectivity and correctness of the proposed approach. Comparing the methodology with several recognized methods demonstrates that the advantages of the Legendre wavelet operational matrix method are its accuracy and the understandability of the calculations.


2019 ◽  
Vol 23 (Suppl. 1) ◽  
pp. 203-214
Author(s):  
Aydin Secer ◽  
Selvi Altun ◽  
Mustafa Bayram

This paper proposes a new technique which rests upon Legendre wavelets for solving linear and non-linear forms of fractional order initial and boundary value problems. In some particular circumstances, a new operational matrix of fractional derivative is generated by utilizing some significant properties of wavelets and orthogonal polynomials. We approached the solution in a finite series with respect to Legendre wavelets and then by using these operational matrices, we reduced the fractional differential equations into a system of algebraic equations. Finally, the introduced technique is tested on several illustrative examples. The obtained results demonstrate that this technique is a very impressive and applicable mathematical tool for solving fractional differential equations.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Amar Benkerrouche ◽  
Mohammed Said Souid ◽  
Kanokwan Sitthithakerngkiet ◽  
Ali Hakem

AbstractIn this manuscript, we examine both the existence and the stability of solutions to the implicit boundary value problem of Caputo fractional differential equations of variable order. We construct an example to illustrate the validity of the observed results.


Sign in / Sign up

Export Citation Format

Share Document