operational matrix
Recently Published Documents


TOTAL DOCUMENTS

519
(FIVE YEARS 210)

H-INDEX

36
(FIVE YEARS 8)

2022 ◽  
Vol 40 ◽  
pp. 1-13
Author(s):  
Fakhrodin Mohammadi ◽  
Hossein Hassani

‎In this article‎, ‎an efficient numerical method based on a new class of orthogonal polynomials‎, ‎namely Chelyshkov polynomials‎, ‎has been presented to approximate solution of time-fractional telegraph (TFT) equations‎. ‎The fractional operational matrix of the Chelyshkov polynomials along with the typical collocation method is used to reduces TFT equations to a system of algebraic equations‎. ‎The error analysis of the proposed collocation method is also investigated‎. ‎A comparison with other published results confirms that the presented Chelyshkov collocation approach is efficient and accurate for solving TFT equations‎. ‎Illustrative examples are included to demonstrate the efficiency of the Chelyshkov method‎.


Fractals ◽  
2021 ◽  
Author(s):  
MAYS BASIM ◽  
NORAZAK SENU ◽  
ZARINA BIBI IBRAHIM ◽  
ALI AHMADIAN ◽  
SOHEIL SALAHSHOUR

Currently, a study has come out with a novel class of differential operators using fractional-order and variable-order fractal Atangana–Baleanu derivative, which in turn, became the source of inspiration for new class of differential equations. The aim of this paper is to apply the operation matrix to get numerical solutions to this new class of differential equations and help us help us to simplify the problem and transform it into a system of an algebraic equation. This method is applied to solve two types, linear and nonlinear of fractal differential equations. Some numerical examples are given to display the simplicity and accuracy of the proposed technique and compare it with the predictor–corrector and mixture two-step Lagrange polynomial and the fundamental theorem of fractional calculus methods.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
İbrahim Avcı 

In this paper, we consider numerical solutions for a general form of fractional delay differential equations (FDDEs) with fractional derivatives defined in the Caputo sense. A fractional integration operational matrix, created using a fractional Taylor basis, is applied to solve these FDDEs. The main characteristic of this approach is, by utilizing the operational matrix of fractional integration, to reduce the given differential equation to a set of algebraic equations with unknown coefficients. This equation system can be solved efficiently using a computer algorithm. A bound on the error for the best approximation and fractional integration are also given. Several examples are given to illustrate the validity and applicability of the technique. The efficiency of the presented method is revealed by comparing results with some existing solutions, the findings of some other approaches from the literature and by plotting absolute error figures.


Author(s):  
Shyam Lal ◽  
Satish Kumar

AbstractIn this paper, two new estimators $$ E_{2^{k-1},0}^{(1)}(f) $$ E 2 k - 1 , 0 ( 1 ) ( f ) and $$ E_{2^{k-1},M}^{(1)}(f) $$ E 2 k - 1 , M ( 1 ) ( f ) of characteristic function and an estimator $$ E_{2^{k-1},M}^{(2)}(f) $$ E 2 k - 1 , M ( 2 ) ( f ) of function of H$$\ddot{\text {o}}$$ o ¨ lder’s class $$H^{\alpha } [0,1)$$ H α [ 0 , 1 ) of order $$0<\alpha \leqslant 1$$ 0 < α ⩽ 1 have been established using Bernoulli wavelets. A new technique has been applied for solving Volterra integral equation of second kind using Bernoulli wavelet operational matrix of integration as well as product operational matrix. These matrices have been utilized to reduce the Volterra integral equation into a system of algebraic equations, which are easily solvable. Some examples are illustrated to show the validity and efficiency of proposed technique of this research paper.


2021 ◽  
Vol 45 (6) ◽  
pp. 951-968
Author(s):  
RAZIEH KAVEHSARCHOGHA ◽  
◽  
REZA EZZATI ◽  
NASRIN KARAMIKABIR ◽  
FARAJOLLAH MOHAMMADI YAGHOBBI

The method that will be presented, is numerical solution based on the Legendre wavelets for solving dual systems of fractional integro-differential equations (FIDEs). First of all we make the operational matrix of fractional order integration. The application of this matrix is transforming FIDEs to a system of algebric equations. By this changing, we are able to solve it by a simple solution. In this way, the Legendre wavelets and their operator matrix are the most important keys of our solution. After explaining the method we test on some illustrative examples which numerical solutions of these examples demonstrate the validity and applicability of suggested method.


2021 ◽  
Vol 5 (4) ◽  
pp. 219
Author(s):  
Somayeh Nemati ◽  
Pedro M. Lima ◽  
Delfim F. M. Torres

We introduce a new numerical method, based on Bernoulli polynomials, for solving multiterm variable-order fractional differential equations. The variable-order fractional derivative was considered in the Caputo sense, while the Riemann–Liouville integral operator was used to give approximations for the unknown function and its variable-order derivatives. An operational matrix of variable-order fractional integration was introduced for the Bernoulli functions. By assuming that the solution of the problem is sufficiently smooth, we approximated a given order of its derivative using Bernoulli polynomials. Then, we used the introduced operational matrix to find some approximations for the unknown function and its derivatives. Using these approximations and some collocation points, the problem was reduced to the solution of a system of nonlinear algebraic equations. An error estimate is given for the approximate solution obtained by the proposed method. Finally, five illustrative examples were considered to demonstrate the applicability and high accuracy of the proposed technique, comparing our results with the ones obtained by existing methods in the literature and making clear the novelty of the work. The numerical results showed that the new method is efficient, giving high-accuracy approximate solutions even with a small number of basis functions and when the solution to the problem is not infinitely differentiable, providing better results and a smaller number of basis functions when compared to state-of-the-art methods.


2021 ◽  
Vol 5 (4) ◽  
pp. 208
Author(s):  
Muhammad I. Bhatti ◽  
Md. Habibur Rahman

A multidimensional, modified, fractional-order B-polys technique was implemented for finding solutions of linear fractional-order partial differential equations. To calculate the results of the linear Fractional Partial Differential Equations (FPDE), the sum of the product of fractional B-polys and the coefficients was employed. Moreover, minimization of error in the coefficients was found by employing the Galerkin method. Before the Galerkin method was applied, the linear FPDE was transformed into an operational matrix equation that was inverted to provide the values of the unknown coefficients in the approximate solution. A valid multidimensional solution was determined when an appropriate number of basis sets and fractional-order of B-polys were chosen. In addition, initial conditions were applied to the operational matrix to seek proper solutions in multidimensions. The technique was applied to four examples of linear FPDEs and the agreements between exact and approximate solutions were found to be excellent. The current technique can be expanded to find multidimensional fractional partial differential equations in other areas, such as physics and engineering fields.


Sign in / Sign up

Export Citation Format

Share Document