Necessary Optimality Conditions for Semi-vectorial Bi-level Optimization with Convex Lower Level: Theoretical Results and Applications to the Quadratic Case

Author(s):  
Julien Collonge
2018 ◽  
Vol 52 (4-5) ◽  
pp. 1019-1041 ◽  
Author(s):  
Le Thanh Tung

The main aim of this paper is to study strong Karush–Kuhn–Tucker (KKT) optimality conditions for nonsmooth multiobjective semi-infinite programming (MSIP) problems. By using tangential subdifferential and suitable regularity conditions, we establish some strong necessary optimality conditions for some types of efficient solutions of nonsmooth MSIP problems. In addition to the theoretical results, some examples are provided to illustrate the advantages of our outcomes.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 112
Author(s):  
Savin Treanţă

In this paper, we investigate the Lagrange dynamics generated by a class of isoperimetric constrained controlled optimization problems involving second-order partial derivatives and boundary conditions. More precisely, we derive necessary optimality conditions for the considered class of variational control problems governed by path-independent curvilinear integral functionals. Moreover, the theoretical results presented in the paper are accompanied by an illustrative example. Furthermore, an algorithm is proposed to emphasize the steps to be followed to solve a control problem such as the one studied in this paper.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
N. H. Sweilam ◽  
S. M. Al-Mekhlafi ◽  
A. O. Albalawi ◽  
D. Baleanu

Abstract In this paper, a novel coronavirus (2019-nCov) mathematical model with modified parameters is presented. This model consists of six nonlinear fractional order differential equations. Optimal control of the suggested model is the main objective of this work. Two control variables are presented in this model to minimize the population number of infected and asymptotically infected people. Necessary optimality conditions are derived. The Grünwald–Letnikov nonstandard weighted average finite difference method is constructed for simulating the proposed optimal control system. The stability of the proposed method is proved. In order to validate the theoretical results, numerical simulations and comparative studies are given.


2018 ◽  
Vol 24 (3) ◽  
pp. 1059-1074
Author(s):  
Michel H. Geoffroy ◽  
Yvesner Marcelin

We introduce a class of positively homogeneous set-valued mappings, called inner prederivatives, serving as first order approximants to set-valued mappings. We prove an inverse mapping theorem involving such prederivatives and study their stability with respect to variational perturbations. Then, taking advantage of their properties we establish necessary optimality conditions for the existence of several kind of minimizers in set-valued optimization. As an application of these last results, we consider the problem of finding optimal allocations in welfare economics. Finally, to emphasize the interest of our approach, we compare the notion of inner prederivative to the related concepts of set-valued differentiation commonly used in the literature.


Sign in / Sign up

Export Citation Format

Share Document