Assessment of the Impact of Wind Generation Intermittency on Electric Power Systems through Security Regions

Author(s):  
Fábio M. Tavela ◽  
João A. Passos Filho ◽  
Othon F. Avila
Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1688 ◽  
Author(s):  
C. Birk Jones ◽  
Matthew Lave ◽  
William Vining ◽  
Brooke Marshall Garcia

An increase in Electric Vehicles (EV) will result in higher demands on the distribution electric power systems (EPS) which may result in thermal line overloading and low voltage violations. To understand the impact, this work simulates two EV charging scenarios (home- and work-dominant) under potential 2030 EV adoption levels on 10 actual distribution feeders that support residential, commercial, and industrial loads. The simulations include actual driving patterns of existing (non-EV) vehicles taken from global positioning system (GPS) data. The GPS driving behaviors, which explain the spatial and temporal EV charging demands, provide information on each vehicles travel distance, dwell locations, and dwell durations. Then, the EPS simulations incorporate the EV charging demands to calculate the power flow across the feeder. Simulation results show that voltage impacts are modest (less than 0.01 p.u.), likely due to robust feeder designs and the models only represent the high-voltage (“primary”) system components. Line loading impacts are more noticeable, with a maximum increase of about 15%. Additionally, the feeder peak load times experience a slight shift for residential and mixed feeders (≈1 h), not at all for the industrial, and 8 h for the commercial feeder.


2009 ◽  
Vol 1 (3) ◽  
pp. 367 ◽  
Author(s):  
Silvano Chiaradonna ◽  
Felicita Di Giandomenico ◽  
Paolo Lollini

2019 ◽  
Vol 235 ◽  
pp. 258-283 ◽  
Author(s):  
R. Mena ◽  
R. Escobar ◽  
Á. Lorca ◽  
M. Negrete-Pincetic ◽  
D. Olivares

2015 ◽  
Vol 792 ◽  
pp. 248-254 ◽  
Author(s):  
Andrey Marchenko ◽  
Alexander Fishov

The paper describes the investigation results of distributed generation connection to the electricity distribution network, and its impact on the quality of electric energy at the load nodes of the surrounding area. The studies were performed with the use of the electro-dynamic model of electric power systems. Technological and functional models were created to provide accounts on low generation services to improve electricity quality.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1920 ◽  
Author(s):  
Byoung-Soo Joo ◽  
Jung-Wook Woo ◽  
Jeong-Hun Lee ◽  
Injoo Jeong ◽  
Jungmin Ha ◽  
...  

Geomagnetic disturbances have the potential to impact the operation of electric power systems, and thus the assessment of their impacts is required as the first step for secure power system operations. While the effects of the disturbances have been observed primarily at higher latitudes, geomagnetic problems are also observed at mid and low latitude locations, in particular including neighboring countries to Korea such as China and Japan. This paper deals with the assessment of impact of geomagnetic disturbances on Korean electric power systems. For the assessment, the geoelectric fields induced by the geomagnetic disturbances are calculated using geomagnetic data measured over the past 20 years in order to quantify the strength of geomagnetic events in Korea. Then, the geomagnetic currents on the grid driven by the geoelectric fields are computed. Finally, the increased reactive power absorption in high voltage transformers is analyzed and accordingly the change of system voltage magnitudes is identified to evaluate whether the system maintains the voltage stability. The systematic study concludes that during a strong geomagnetic disturbance, the Korean electric power system satisfies the associated standards in the U.S. and maintains system stability.


Sign in / Sign up

Export Citation Format

Share Document