scholarly journals On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems

2015 ◽  
Vol 36 (3) ◽  
pp. 1299-1314
Author(s):  
T. Antczak
4OR ◽  
2021 ◽  
Author(s):  
Tadeusz Antczak

AbstractIn this paper, the class of differentiable semi-infinite multiobjective programming problems with vanishing constraints is considered. Both Karush–Kuhn–Tucker necessary optimality conditions and, under appropriate invexity hypotheses, sufficient optimality conditions are proved for such nonconvex smooth vector optimization problems. Further, vector duals in the sense of Mond–Weir are defined for the considered differentiable semi-infinite multiobjective programming problems with vanishing constraints and several duality results are established also under invexity hypotheses.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Tadeusz Antczak ◽  
Najeeb Abdulaleem

Abstract A new class of (not necessarily differentiable) multiobjective fractional programming problems with E-differentiable functions is considered. The so-called parametric E-Karush–Kuhn–Tucker necessary optimality conditions and, under E-convexity hypotheses, sufficient E-optimality conditions are established for such nonsmooth vector optimization problems. Further, various duality models are formulated for the considered E-differentiable multiobjective fractional programming problems and several E-duality results are derived also under appropriate E-convexity hypotheses.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 489-498 ◽  
Author(s):  
Anurag Jayswal ◽  
Krishna Kummari ◽  
Vivek Singh

As duality is an important and interesting feature of optimization problems, in this paper, we continue the effort of Long and Huang [X. J. Long, N. J. Huang, Optimality conditions for efficiency on nonsmooth multiobjective programming problems, Taiwanese J. Math., 18 (2014) 687-699] to discuss duality results of two types of dual models for a nonsmooth multiobjective programming problem using convexificators.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 894
Author(s):  
Savin Treanţă

The present paper deals with a duality study associated with a new class of multiobjective optimization problems that include the interval-valued components of the ratio vector. More precisely, by using the new notion of (ρ,ψ,d)-quasiinvexity associated with an interval-valued multiple-integral functional, we formulate and prove weak, strong, and converse duality results for the considered class of variational control problems.


2021 ◽  
Vol 78 (1) ◽  
pp. 139-156
Author(s):  
Antonio Boccuto

Abstract We give some versions of Hahn-Banach, sandwich, duality, Moreau--Rockafellar-type theorems, optimality conditions and a formula for the subdifferential of composite functions for order continuous vector lattice-valued operators, invariant or equivariant with respect to a fixed group G of homomorphisms. As applications to optimization problems with both convex and linear constraints, we present some Farkas and Kuhn-Tucker-type results.


Sign in / Sign up

Export Citation Format

Share Document