Preconditioned GMRES method for a class of Toeplitz linear systems in fractional eigenvalue problems

2020 ◽  
Vol 39 (4) ◽  
Author(s):  
Qian Zuo ◽  
Ying He
2009 ◽  
Vol 227 (1) ◽  
pp. 196-205 ◽  
Author(s):  
George Pashos ◽  
Michail E. Kavousanakis ◽  
Antony N. Spyropoulos ◽  
John A. Palyvos ◽  
Andreas G. Boudouvis

2017 ◽  
Vol 94 (10) ◽  
pp. 2122-2144 ◽  
Author(s):  
Jiaquan Gao ◽  
Kesong Wu ◽  
Yushun Wang ◽  
Panpan Qi ◽  
Guixia He

Author(s):  
Pingzhou Ming ◽  
Junjie Pan ◽  
Xiaolan Tu ◽  
Dong Liu ◽  
Hongxing Yu

Sub-channel thermal-hydraulics program named CORTH and assembly lattice calculation program named KYLIN2 have been developed in Nuclear Power Institute of China (NPIC). For the sake of promoting the computing efficiency of these programs and achieving the better description on fined parameters of reactor, the programs’ structure and details are interpreted. Then the characteristics of linear systems of these programs are analyzed. Based on the Generalized Minimal Residual (GMRES) method, different parallel schemes and implementations are considered. The experimental results show that calculation efficiencies of them are improved greatly compared with the serial situation.


Algorithms ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 100 ◽  
Author(s):  
Luca Bergamaschi

The aim of this survey is to review some recent developments in devising efficient preconditioners for sequences of symmetric positive definite (SPD) linear systems A k x k = b k , k = 1 , … arising in many scientific applications, such as discretization of transient Partial Differential Equations (PDEs), solution of eigenvalue problems, (Inexact) Newton methods applied to nonlinear systems, rational Krylov methods for computing a function of a matrix. In this paper, we will analyze a number of techniques of updating a given initial preconditioner by a low-rank matrix with the aim of improving the clustering of eigenvalues around 1, in order to speed-up the convergence of the Preconditioned Conjugate Gradient (PCG) method. We will also review some techniques to efficiently approximate the linearly independent vectors which constitute the low-rank corrections and whose choice is crucial for the effectiveness of the approach. Numerical results on real-life applications show that the performance of a given iterative solver can be very much enhanced by the use of low-rank updates.


2015 ◽  
Vol 23 (4) ◽  
Author(s):  
Kirill V. Demyanko ◽  
Yuri M. Nechepurenko ◽  
Miloud Sadkane

AbstractThis work is devoted to computations of deflating subspaces associated with separated groups of finite eigenvalues near specified shifts of large regular matrix pencils. The proposed method is a combination of inexact inverse subspace iteration and Newton’s method. The first one is slow but reliably convergent starting with almost an arbitrary initial subspace and it is used as a preprocessing to obtain a good initial guess for the second method which is fast but only locally convergent. The Newton method necessitates at each iteration the solution of a generalized Sylvester equation and for this task an iterative algorithm based on the preconditioned GMRES method is devised. Numerical properties of the proposed combination are illustrated with a typical hydrodynamic stability problem.


Sign in / Sign up

Export Citation Format

Share Document