Analysis of thermoelastic damping in trilayered composite microplates based on three-dimensional heat conduction

Author(s):  
Jinchi Xu ◽  
Xiaopeng Li ◽  
Renzhen Chen ◽  
Linlin Wang ◽  
Zemin Yang ◽  
...  
Author(s):  
Xiaopeng Li ◽  
Linlin Wang ◽  
Wujiu Pan ◽  
Zemin Yang ◽  
Jinchi Xu

Under the condition that microresonators work at room temperature or vaccum, thermoelastic damping is one of the main mechanisms of energy dissipation. Thermoelastic damping caused by the internal consumption of thermoelastic materials has always prevented the improvement of the quality of microresonators. In this paper, the theoretical model of thermoelastic damping in fully clamped bilayered plate microresonators based on the theory of three-dimensional heat conduction is first established and then verified to be equivalent to the previous single-layer model or not through the formula derivation. Analysis on thermoelastic damping at the first-order frequency where microresonators usually work is carried out afterwards. The differences of thermoelastic damping in the present three-dimensional model with different materials are investigated, including the convergence speed and the value of thermoelastic damping with different thicknesses. Then, with different lengths, widths, and thicknesses, but the same combination of materials, the thermoelastic damping is investigated in the present model. Furthermore, the present bilayered model is compared with the single-layer model to investigate their equivalent relationship. Finally, the present three-dimensional model is compared with the one-dimensional model and FEM models to investigate its feasibility.


2016 ◽  
Vol 26 (3) ◽  
pp. 623-640 ◽  
Author(s):  
Sara Beddiaf ◽  
Laurent Autrique ◽  
Laetitia Perez ◽  
Jean-Claude Jolly

Abstract Inverse three-dimensional heat conduction problems devoted to heating source localization are ill posed. Identification can be performed using an iterative regularization method based on the conjugate gradient algorithm. Such a method is usually implemented off-line, taking into account observations (temperature measurements, for example). However, in a practical context, if the source has to be located as fast as possible (e.g., for diagnosis), the observation horizon has to be reduced. To this end, several configurations are detailed and effects of noisy observations are investigated.


2021 ◽  
Vol 169 ◽  
pp. 108437
Author(s):  
Hongyue Zhou ◽  
Haobin Jiang ◽  
Pu Li ◽  
Hongtao Xue ◽  
Billy Bo

2001 ◽  
Author(s):  
Brian H. Dennis ◽  
George S. Dulikravich

Abstract A finite element method (FEM) formulation is presented for the prediction of unknown steady boundary conditions in heat conduction on multiply connected three-dimensional solid objects. The present FEM formulation is capable of determining temperatures and heat fluxes on the boundaries where such quantities are unknown or inaccessible, provided such quantities are sufficiently over-specified on other boundaries. Details of the discretization, linear system solution techniques, regularization, and sample results for 3-D problems are presented.


Sign in / Sign up

Export Citation Format

Share Document