scholarly journals Effect of particle roughness on the bulk deformation using coupled boundary element and discrete element methods

2019 ◽  
Vol 7 (3) ◽  
pp. 603-613
Author(s):  
Sadegh Nadimi ◽  
Ali Ghanbarzadeh ◽  
Anne Neville ◽  
Mojtaba Ghadiri

Abstract Particles slide and roll on each other when a granular medium is sheared. Consequently, the tribological properties, such as inter-particle friction and adhesion, play a major role in influencing their bulk failure and rheology. Although the influence of roughness on adhesion and friction of contacting surfaces is known, the incorporation of the surface roughness in the numerical modelling of granular materials has received little attention. In this study, the boundary element method (BEM), which is widely used for simulating the mechanics of interacting surfaces, is coupled with discrete element method (DEM) and the bulk deformation of granular materials is analysed. A BEM code, developed in-house, is employed to calculate the normal force–displacement behaviour for rough contact deformations, based on which a contact model is proposed. This is an efficient and relatively fast method of calculating the contact mechanics of rough surfaces. The resulting model is then implemented in the simulations by DEM to determine the effect of micro-scale surface roughness on the bulk compression of granular materials. This study highlights the importance of the effect of surface characteristics on contact behaviour of particles for the case of shallow footing and provides an efficient approach for modelling the flow behaviour of a large number of rough particles.

Author(s):  
Stephen T. McClain ◽  
B. Keith Hodge ◽  
Jeffrey P. Bons

The discrete-element method considers the total aerodynamic drag on a rough surface to be the sum of shear drag on the flat part of the surface and the form drag on the individual roughness elements. The total heat transfer from a rough surface is the sum of convection through the fluid on the flat part of the surface and the convection from each of the roughness elements. The discrete-element method has been widely used and validated for predicting heat transfer and skin friction for rough surfaces composed of sparse, ordered, and deterministic elements. Real gas-turbine surface roughness is different from surfaces with sparse, ordered, and deterministic roughness elements. Modifications made to the discrete-element roughness method to extend the validation to real gas-turbine surface roughness are detailed. Two rough surfaces found on high-hour gas-turbine blades were characterized using a Taylor-Hobson Form Talysurf Series 2 profilometer. Two rough surfaces and two elliptical-analog surfaces were generated for wind-tunnel testing using a three-dimensional printer. The printed surfaces were scaled to maintain similar boundary-layer thickness to roughness height ratio in the wind tunnel as found in gas-turbine operation. The results of the wind tunnel skin friction and Stanton number measurements and the discrete-element method predictions for each of the four surfaces are presented and discussed. The discrete-element predictions made considering the gas-turbine roughness modifications are within 7% of the experimentally-measured skin friction coefficients and are within 16% of the experimentally-measured Stanton numbers.


Sign in / Sign up

Export Citation Format

Share Document