contact model
Recently Published Documents


TOTAL DOCUMENTS

871
(FIVE YEARS 208)

H-INDEX

46
(FIVE YEARS 6)

2022 ◽  
Vol 320 ◽  
pp. 126322
Author(s):  
Can Jin ◽  
Yuanjie Feng ◽  
Xu Yang ◽  
Pengfei Liu ◽  
Zhongjun Ding ◽  
...  

Author(s):  
Jing Liu ◽  
Chenyu An ◽  
Guang Pan

The nonlinear contact forces and deformations between the balls and raceways can cause very complex vibration behaviours of rotor systems with the waviness in the support bearings. However, almost all previous works that used sinusoidal waviness took the Hertzian solution as the calculation method, which is not an accurate method based on Johnson’s formulation since the changes in the curvature at the sinusoidal contact surfaces. To overcome this issue, a new dynamic model of a rigid rotor system with the waviness in the support bearings is proposed. To provide a more accurate nonlinear contact force formulation for the sinusoidal waviness profile, the model used the Johnson’s extended Hertzian contact model to replace Hertzian contact model. This model can consider the time-varying curvature between the mating sinusoidal surfaces. The lubricating condition in the support bearing is also considered. A comparative study on the effects of Hertzian contact model, simplified Hertzian contact model, and Johnson's extended Hertzian contact model on the nonlinear vibrations of the rotor system is developed. The effects of the waviness amplitude and orders on the vibrations of the rotor system are discussed. The comparative simulations show that the proposed model can provide a more reasonable approach for predicting the vibrations of the rigid rotor system. Moreover, the simulations give that the nonlinear contact forces in the support bearings can greatly affect the system vibrations.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2136
Author(s):  
John P. Morrissey ◽  
Kevin J. Hanley ◽  
Jin Y. Ooi

Discrete Element Method (DEM) simulations have the potential to provide particle-scale understanding of twin-screw granulators. This is difficult to obtain experimentally because of the closed, tightly confined geometry. An essential prerequisite for successful DEM modelling of a twin-screw granulator is making the simulations tractable, i.e., reducing the significant computational cost while retaining the key physics. Four methods are evaluated in this paper to achieve this goal: (i) develop reduced-scale periodic simulations to reduce the number of particles; (ii) further reduce this number by scaling particle sizes appropriately; (iii) adopt an adhesive, elasto-plastic contact model to capture the effect of the liquid binder rather than fluid coupling; (iv) identify the subset of model parameters that are influential for calibration. All DEM simulations considered a GEA ConsiGma™ 1 twin-screw granulator with a 60° rearward configuration for kneading elements. Periodic simulations yielded similar results to a full-scale simulation at significantly reduced computational cost. If the level of cohesion in the contact model is calibrated using laboratory testing, valid results can be obtained without fluid coupling. Friction between granules and the internal surfaces of the granulator is a very influential parameter because the response of this system is dominated by interactions with the geometry.


Author(s):  
Ayumi Manawadu ◽  
Pizhong Qiao

Abstract Timely identification of collision damage, especially in aging bridges, is critical for the safety of commuters. However, there is no efficient, cost-effective, in-situ technique to serve this purpose. Wave propagation-based structural health monitoring (SHM) using piezoelectric material is a promising alternative for remote sensing. To that end, this study aims to develop a wave propagation-based monitoring technique using surface-bonded smart piezoelectric modules (SPM) to determine the impact force, location, and projectile properties of low-velocity impacts on concrete panels. An impact source localization algorithm used in composite structures is adapted and simplified for concrete structures. This technique is validated using a combined experimental and numerical investigation, which shows good agreement with the actual impact source location. The impact force, projectile mass, and velocity is determined using a semi-theoretical-experimental technique based on Reed contact model. A special contact-SPM is fabricated and calibrated to determine the contact force at the impact location. The relationship between contact-SPM response and distributed-SPM response is determined using a drop-weight test with steel sphere. The peak contact force and contact duration are in good agreement with Reed contact model, although the latter overpredicts the given parameters. A simplified formula based on Reed contact model is used to inversely estimate the projectile velocity of a known mass and vice versa. Then, using pre-calibrated data, the impact force, projectile properties, and impact force-time distribution is determined using the response of distributed-SPM system. The technique is validated using an arbitrary steel sphere mass. As demonstrated in the combined experimental, theoretical, and numerical study, the proposed surface-bonded SPM system is capable of effectively identifying low-velocity impact incidents on concrete structures, which could potentially facilitate inexpensive, in-situ, real-time condition assessment.


2021 ◽  
Vol 13 (21) ◽  
pp. 12247
Author(s):  
Elahe Talebiahooie ◽  
Florian Thiery ◽  
Jingjing Meng ◽  
Hans Mattsson ◽  
Erling Nordlund ◽  
...  

Ballasted tracks are common in the railway system as a means of providing the necessary support for the sleepers and the rails. To keep them operational, tamping and other maintenance actions are performed based on track geometry measurements. Ballast particle rearrangement, which is caused by train load, is one of the most important factors leading to track degradation. As a result, when planning maintenance, it is vital to predict the behaviour of the ballast under cyclic loading. Since ballast is a granular matter with a nonlinear and discontinuous mechanical behaviour, the discrete element method (DEM) was used in this paper to model the ballast particle rearrangement under cyclic loading. We studied the performance of linear and nonlinear models in simulating the settlement of the sleeper, the lateral deformation of the ballast shoulder and the porosity changes under the sleeper. The models were evaluated based on their ability to mimic the ballast degradation pattern in vertical and lateral direction. The linear contact model and the hysteretic contact model were used in the simulations, and the effect of the friction coefficient and different damping models on the simulations was assessed. An outcome of this study was that a nonlinear model was proposed in which both the linear and the hysteretic contact models are combined. The simulation of the sleeper settlement and the changes in the porosity under the sleeper improved in the proposed nonlinear model, while the computation time required for the proposed model decreased compared to that required for the linear model.


Author(s):  
Shuai Cheng ◽  
Xianghui Meng ◽  
Rui Li ◽  
Ruichao Liu ◽  
Rui Zhang ◽  
...  
Keyword(s):  

Author(s):  
Jiacheng Zhou ◽  
Libin Zhang ◽  
Chao Hu ◽  
Zhihang Li ◽  
Junjie Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document