biaxial loading
Recently Published Documents


TOTAL DOCUMENTS

856
(FIVE YEARS 133)

H-INDEX

34
(FIVE YEARS 5)

Author(s):  
J. Candeias ◽  
R. Baptista ◽  
R. Cláudio ◽  
L. Reis ◽  
M. Freitas

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 75
Author(s):  
Huynh-Xuan Tin ◽  
Ngo-Thanh Thuy ◽  
Soo-Yeon Seo

Various researches have been performed to find an effective confining method using FRP sheet in order to improve the structural capacity of reinforced concrete column. However, most of these researches were undertaken for the columns subjected to concentric compressive load or fully confined RC columns. To date, it remains hard to find studies on partially FRP-confined RC columns under eccentric load. In this manner, an experimental investigation was carried out to assess the performance of rectangular RC column with different patterns of CFRP-wrap subject to eccentric loads in this paper. The experiment consists of fourteen mid-scale rectangular RC columns of 200 mm × 200 mm × 800 mm, including five controlled columns and nine CFRP-strengthened ones. All CFRP-strengthened columns were reinforced with one layer of vertical CFRP sheet with the main fiber along the axial axis at four sides, then divided into three groups according to confinement purpose, namely unconfined, partially CFRP-confined, and fully CFRP-confined group. Two loading conditions, namely uniaxially and biaxially eccentric loads, are considered as one of the test parameters. From the test of uniaxial eccentric load, partial and full CFRP-wraps provided 19% and 33% increased load-carrying capacity at an eccentricity-to-column thickness ratio (e/h) of 0.125, respectively, compared to controlled columns, and 8% and 11% at e/h = 0.25, respectively. For the partially CFRP-confined columns subjected to biaxial eccentric load with e/h = 0.125 and 0.25, the load-carrying capacities were improved by 19% and 31%, respectively. This means that the partial confinement with CFRP effectively improves the load-carrying capacity at larger biaxial eccentric load. It was found that the load-carrying capacity could be properly predicted by using code equations of ACI 440.2R-17 and Fib Bulletin 14 Guideline for the full CFRP-confined or partially CFRP-confined columns under uniaxial load. For partially CFRP-confined columns under biaxial loading, however, the safety factors using the Fib calculation process were 20% to 31% lower than that of uniaxially loaded columns.


2021 ◽  
Vol 16 (59) ◽  
pp. 188-197
Author(s):  
Trung-Kien Nguyen ◽  
Thanh-Trung Vo ◽  
Nhu-Hoang Nguyen

Strain localization is one of key phenomena which have been studied extensively in geomaterials and for different kinds of materials including metals and polymers. This well-known phenomenon appears when structure/material is closed to failure. Theoretical, experimental, and numerical research have been dedicated to this subject for a long while. In the numerical aspects, strain localization inside the periodic granular assembly has not been well studied in the literature. In this paper, we investigate the occurrence and development of strain localization within a dense cohesive-frictional granular assembly with high coordination number under bi-periodic boundary conditions by Discrete Element Modeling (DEM). The granular assembly is composed of 2D circular disks and subjected to biaxial loading with constant lateral pressure. The results show that the formation of shear bands is of periodic type, consistent with the boundary conditions. This formation has the origins of the irreversible losing of cohesive contacts, viewed as micro-crackings which strongly concentrated in the periodic shear zones. This micromechanical feature is therefore strongly related to the strain localization observed at the sample scale. Finally, we also show that the strain localization is in perfect agreement with the sample’s displacement fluctuation fields.


Author(s):  
Harish Ramesh Babu ◽  
Marco Böcker ◽  
Mario Raddatz ◽  
Sebastian Henkel ◽  
Horst Biermann ◽  
...  

Abstract Gas turbines and aircraft engines are dominated by cyclic operating modes with fatigue-related loads. This may result in the acceleration of damage development on the components. Critical components of turbine blades and discs are exposed to cyclic thermal and mechanical multi-axial fatigue. In the current work, planar-biaxial Low-Cycle-Fatigue tests are conducted using cruciform specimens at different test temperatures. The influence on the deformation and lifetime behaviour of the nickel-base disk alloy IN718 is investigated at selected cyclic proportional loading cases. The calculation of the stress and strain distribution of the cruciform specimens from the experimental data is difficult to obtain due to complex geometry and temperature gradients. Therefore, there is a need for Finite Element Simulations. A viscoplastic material model is considered to simulate the material behaviour subjected to uniaxial and the selected planar-biaxial loading conditions. At first, uniaxial simulation results are compared with the uniaxial experiment results for both batches of IN718. Then, the same material parameters are used for simulating the biaxial loading cases. The prediction of FE simulation results is in good agreement with the experimental LCF test for proportional loadings. The equivalent stress amplitude results of the biaxial simulation are compared with the uniaxial results. Furthermore, the lifetime is calculated from the simulation and by using Crossland and Sines multi-axial stress-based approaches. The Crossland model predicts fatigue life significantly better than the Sines model. Finally, the simulated lifetime results are compared with the experimental lifetime


2021 ◽  
Vol 8 ◽  
Author(s):  
Jun Zhang ◽  
Chen Li ◽  
Congxiang Zhu ◽  
Zhiqing Zhao

Biaxial compression-compression, biaxial tension-compression and compression-shear tests were carried out on self-compacting concrete (SCC) using the rock true triaxial machine and compression-shear hydraulic servo machine to explore the biaxial mechanical properties of SCC. The failure modes and stress-strain curves of SCC under different loading conditions were obtained through experiment. Based on the comparison with the biaxial loading test data of ordinary concrete, the following conclusions are drawn: the failure modes and failure mechanisms under biaxial compression-compression and biaxial tension-compression are similar between SCC and ordinary concrete. Under compression-shear loading, the oblique cracks formed on the lateral surface of the specimen parallel to the shear direction gradually increased and the friction marks on the shear failure section were gradually deepened with the increase of axial compression ratio. The development trend of the stress-strain curve in the principal stress direction was not related to the lateral stress. Under the influence of lateral compressive stress, the principal compressive stress of SCC was increased by 55.78% on average; under biaxial tension-compression, the principal tensile stress of SCC had a maximum reduction of 62.79%; and under the compression-shear action, the shear stress of SCC had a maximum increase of 3.35 times. Compared with the biaxial stress test data of ordinary concrete, it can be seen that the lateral compressive stress had a more significant effect on the principal stress of SCC under biaxial loading. Subsequently, the strength criterion equations of SCC under biaxial loading were proposed based on the principal stress space and octahedral space stress respectively, which have shown good applicability in practice.


Author(s):  
Michael Becker ◽  
Desiderio Kovar

Abstract A criterion to predict the onset of disordering under biaxial loading based on a critical potential energy per atom was studied. In contrast to previous theories for disordering, this criterion incorporates the effects of strain rate and strain state. The strain state (or stress state) is defined by the combination of strain (or stress) magnitudes and directions that are applied to each sample during the simulation. Τhe validity of this criterion was studied using molecular dynamic (MD) simulations of Ag conducted over a wide range of biaxial strain rates, strain configurations, and crystal orientations with respect to the applied stress state. Biaxial strains were applied in two different planes, (112 ̅) and (001) in eight directions in each plane. Results showed that, when larger strain rates were applied, there was a transition from plastic deformation driven by the nucleation and propagation of dislocations to disordering and viscous flow. Although the critical strain rate to initiate disorder was found to vary in the range of ε ̇ = 1×1011 s-1 to ε ̇ = 4×1011 s-1, a consistent minimum PE/atom of -2.7 eV was observed over a broad range of strain states and for both crystallographic orientations that were studied. This indicates that the critical PE/atom is a material property that can be used to predict the onset of disordering under biaxial loading. Further, the results showed that this criterion can be applied successfully even when non-uninform strain states arise in the crystal.  


Author(s):  
Omkar Adhikari

Abstract: By considering the tightening process, the experimental testing will be conducted to explore the mechanism of bolt selfloosening under biaxial loading. The most common mode of failure is overloading: Operating forces of the application produce loads that exceed the clamp load, causing the joint to loosen over time or fail catastrophically. Over torque might cause failure by damaging the threads and deforming the fastener, though this can happen over a very long time. Also, the bolts may fail under fatigue. The components used in the system are bolts, pneumatic cylinder and flow control valve. The pneumatic cylinder is actuated with the help of compressor. The flow of air in the cylinder will be controlled with the help of pneumatic cylinder which will be acted on the bolts in two directions that is from downward & upward direction. This means the load will be tensile and shearing load. The bolts are attached to the plates. Because of actuation of the pneumatic cylinder the bolts will become loose. These bolts will be tested by using biaxial loading. The result & conclusion was drawn after the experimental testing. Keywords: Bi-axial Loading, Fasteners, Bolt Loosening, Residual Torque, Fastener Overloading


Author(s):  
Changlun Sun ◽  
Li Zhuang ◽  
Sunggyu Jung ◽  
Jangguen Lee ◽  
Jeoung Seok Yoon

Sign in / Sign up

Export Citation Format

Share Document