Improved Vibration Suppression Modeling for Reinforcement Clamping by Eco-friendly Magnetorheological Fluid During Milling of Annular Thin-Walled Workpiece

Author(s):  
Xiaohui Jiang ◽  
Kun Wu ◽  
Yong Zhang ◽  
Shirong He
2019 ◽  
Vol 30 (7) ◽  
pp. 1053-1069 ◽  
Author(s):  
M Talebitooti ◽  
M Fadaee

Vibration suppression of a carbon nanotube–reinforced sandwich beam with magnetorheological fluid core is numerically investigated by employing the differential quadrature method. The beam has functionally graded carbon nanotube–reinforced composite base and constraining layers while its core layer is made of magnetorheological fluid. Four different types of distribution of carbon nanotubes along the thickness direction are considered. The extended rule of mixture is used to explain the effective material properties of the base and constraining layers of the beam. The equations of motion and corresponding boundary conditions are derived by applying Hamilton’s principle, and then these coupled differential equations are transformed into a set of algebraic equation applying the differential quadrature method. Natural frequencies and loss factors are extracted and compared with those available in literature. Convergence study has been performed to verify stability of the method. Effects of various parameters such as magnetic field intensity, mode number, and thickness of the magnetorheological fluid core layer on the natural frequencies and loss factors are studied.


2020 ◽  
Vol 108 (7-8) ◽  
pp. 2607-2619 ◽  
Author(s):  
Jiang Xiaohui ◽  
Zhang Yong ◽  
Lu Weiwei ◽  
Gao Shan ◽  
Liu Ling ◽  
...  

Author(s):  
Kotaro Mori ◽  
Iwao Yamaji ◽  
Daisuke Kono ◽  
Atsushi Matsubara ◽  
Takehiro Ishida ◽  
...  

Abstract The authors have studied support mechanisms for the machining of thin-walled workpieces. Previous studies have shown that the newly proposed pivot support has a vibration suppression effect on flat plate workpieces. This report clarifies the guideline for determining the placement interval for deploying this support on a cylindrical workpiece. Also, a machining test was conducted to compare the damping effect of pivot support with that of conventional rigid body support. As a result, it was found that the pivot support has an equivalent vibration suppression effect as the conventional support has. By using the proposed support, installation can be simplified while maintaining the damping effect.


2017 ◽  
Vol 17 (05) ◽  
pp. 1740003 ◽  
Author(s):  
Jerzy Warminski ◽  
Jarosław Latalski

In this paper, the effectiveness of a saturation control strategy in suppressing vibration of a rotating composite thin walled beam is studied. The mathematical model of the flexible beam takes into account a shear deformation effect, a warping function, a centrifugal force and the Coriolis acceleration. To extend the generality of the proposed formulation an inertia of the hub is also considered. Adaptive capability of the beam is achieved through the implementation of the saturation control algorithm. Within the performed tests, the discussed control strategy is applied for different magnitudes of flexural–torsional vibration modes resulting from different orientations of beam laminate-reinforcing fiber’s. The obtained results prove the applied nonlinear control to be the effective method for beam vibration suppression in near-by resonance zones for all studied cases. Parametric studies considered different rotating speeds of the system. It is shown that the vibration of the beam can be suppressed to similar levels independently of the transportation motion rotating speed. However, significant differences in the width of vibration suppression zones are observed.


Sign in / Sign up

Export Citation Format

Share Document