magnetorheological fluids
Recently Published Documents


TOTAL DOCUMENTS

609
(FIVE YEARS 148)

H-INDEX

42
(FIVE YEARS 7)

Author(s):  
Yurui Shen ◽  
Dezheng Hua ◽  
Xinhua Liu ◽  
Weihua Li ◽  
Grzegorz Krolczyk ◽  
...  

Abstract In order to study the rheological properties of aqueous magnetorheological fluids (MRFs) from microscopic point of view, an experimental observation method based on the fluorescence confocal laser scanning microscope is proposed to clearly produce the chain shape of the magnetic particles. Firstly, the mathematical model of the magnetic particles is established in a magnetic field using the magnetic dipole theory, and the MRFs with different fraction volumes and different magnetic fields are investigated. Furthermore, an aqueous MRFs experiment is prepared, in which the magnetic particles are combined with Alexa 488 fluorescent probe. On this basis, an observation method is innovatively developed using two-dimensional (2D) and three-dimensional (3D) image analysis by the fluorescence confocal microscope. The rheological mechanism of the aqueous MRFs is investigated using four different types of MRFs in an external magnetic field. The analysis results demonstrate that the simulation and experimental rheological properties of the MRFs are consistent with the magnetic dipole theory. Moreover, the proposed method is able to real-time observe the rheological process of the MRFs with a very high resolution, which ensures the correctness of the analysis results of the rheological mechanism.


Author(s):  
Lei Xie ◽  
Young-Tai Choi ◽  
Changrong Liao ◽  
Zhi Zeng ◽  
Norman M Wereley

Abstract This study addresses the synthesis and field-dependent rheological characteristics of novel magnetorheological fluids (MRFs) using high viscosity linear polysiloxanes (HVLPs) as a carrier fluid. First of all, the components and preparation of novel HVLP-based MRFs (HVLP MRFs) were explained in detail and the microscopic images of each component were taken by using scanning electron microscope (SEM). Four HVLP MRF samples with different particle volume fractions of 10, 15, 20, and 26 vol% in the same HVLP carrier fluid viscosity of 800 Pa·s were synthesized to investigate the particle concentration effect on their field-dependent rheological properties. In order to understand the effect of the carrier fluid viscosity, two more HVLP MRF samples with different HVLP viscosities of 140 and 440 Pa·s in the same particle concentration of 26 vol% were also fabricated. In addition, the temperature effect on HVLP MRFs was studied by using the sample with 26 vol% in particle concentration and 140 Pa·s in HVLP viscosity under different operating temperatures of 25, 40, 55 and 70℃. The flow curve measurements of shear stress versus shear rate in the magnetic fields were conducted by using controlled shear rate (CSR) test method with a commercial parallel-plate type rotational rheometer. From the flow curves, the field-dependent rheological properties of HVLP MRFs including static and dynamic yield stresses and the dynamic range (ratio of field on to field off yield stress) were obtained. These material characteristics were then examined as a function of varying particle concentration, varying carrier fluid viscosity, and varying temperature. A conventional commercial MRF (i.e., Lord MRF-126CD) was adopted for comparison study and its rheological properties under different temperatures were also measured and compared with those of HVLP MRFs. Using HVLP carrier fluids, it was demonstrated that the HVLP MRFs exhibited much greater suspension stability than the conventional commercial MRF.


Author(s):  
Vălu Gheorghe-Orlando ◽  
Susan-Resiga Daniela

Abstract In this paper we investigated from rheological point of view some samples of ferrofluid-based magnetorheological fluids (FF-MRFs) with different volumic fractions of Fe microparticles, but with the same ferrofluid used as carrier liquid. We correlated the dimensionless flow curves, measured at different values of the magnetic field induction, using either Mason number or Casson number. It has been shown that in this approach, data sets measured under different conditions collapse on a single curve. This master curve is useful for controlling the concentration of Fe particles, so that the magnetic and magnetorheological properties of FF-MRF to be adapted to obtain high-performance applications.


2021 ◽  
Vol 65 (6) ◽  
pp. 1347-1359
Author(s):  
Xiaolin Li ◽  
Ruihua Guan ◽  
KangTai Ou ◽  
Qiang Fu ◽  
Guiyan Yang ◽  
...  

2021 ◽  
Vol 11 (21) ◽  
pp. 9807
Author(s):  
Purwadi Joko Widodo ◽  
Eko Prasetya Budiana ◽  
Ubaidillah Ubaidillah ◽  
Fitrian Imaduddin

This study aims to observe the magnitude of the Magnetorheological Fluids (MRFs) pressure due to the application of a magnetic field. This was accomplished by placing the MRFs in a U-shaped tube, then applying a magnetic field generated by a magnetic coil. A finite element simulation for the magnetic field was carried out to estimate the magnetic field strength generated by the coil variable to the current input given in the simulated apparatus. Changes in MRFs pressure were recorded using a data logger to better observe the fluid pressure phenomena occurring in the MRFs with respect to current input variations. The results showed that the magnetic field influences the MRFs fluid pressure proportionally. The slope is not constant as the magnetic field effect to the fluid pressure gets stronger when the current input is higher. However, there are also an adverse effect of heat generated in the coil in higher current, which results in coil performance degradation and reduces the magnetic field strength.


Sign in / Sign up

Export Citation Format

Share Document