scholarly journals Integral representations of rank two false theta functions and their modularity properties

2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Kathrin Bringmann ◽  
Jonas Kaszian ◽  
Antun Milas ◽  
Caner Nazaroglu

AbstractFalse theta functions form a family of functions with intriguing modular properties and connections to mock modular forms. In this paper, we take the first step towards investigating modular transformations of higher rank false theta functions, following the example of higher depth mock modular forms. In particular, we prove that under quite general conditions, a rank two false theta function is determined in terms of iterated, holomorphic, Eichler-type integrals. This provides a new method for examining their modular properties and we apply it in a variety of situations where rank two false theta functions arise. We first consider generic parafermion characters of vertex algebras of type $$A_2$$ A 2 and $$B_2$$ B 2 . This requires a fairly non-trivial analysis of Fourier coefficients of meromorphic Jacobi forms of negative index, which is of independent interest. Then we discuss modularity of rank two false theta functions coming from superconformal Schur indices. Lastly, we analyze $${\hat{Z}}$$ Z ^ -invariants of Gukov, Pei, Putrov, and Vafa for certain plumbing $$\mathtt{H}$$ H -graphs. Along the way, our method clarifies previous results on depth two quantum modularity.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Males ◽  
Andreas Mono ◽  
Larry Rolen

Abstract In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.


2012 ◽  
Vol 29 (1-3) ◽  
pp. 295-310 ◽  
Author(s):  
Kathrin Bringmann ◽  
Amanda Folsom ◽  
Robert C. Rhoades

2018 ◽  
Vol 16 (1) ◽  
pp. 1335-1343
Author(s):  
SoYoung Choi ◽  
Chang Heon Kim

AbstractExtending works of Ono and Boylan to the half-integral weight case, we relate the algebraicity of Fourier coefficients of half-integral weight mock modular forms to the vanishing of Fourier coefficients of their shadows.


Author(s):  
Amanda Folsom

This article is in commemoration of Ramanujan's election as Fellow of The Royal Society 100 years ago, as celebrated at the October 2018 scientific meeting at the Royal Society in London. Ramanujan's last letter to Hardy, written shortly after his election, surrounds his mock theta functions. While these functions have been of great importance and interest in the decades following Ramanujan's death in 1920, it was unclear how exactly they fit into the theory of modular forms—Dyson called this ‘a challenge for the future’ at another centenary conference in Illinois in 1987, honouring the 100th anniversary of Ramanujan's birth. In the early 2000s, Zwegers finally recognized that Ramanujan had discovered glimpses of special families of non-holomorphic modular forms, which we now know to be Bruinier and Funke's harmonic Maass forms from 2004, the holomorphic parts of which are called mock modular forms. As of a few years ago, a fundamental question from Ramanujan's last letter remained, on a certain asymptotic relationship between mock theta functions and ordinary modular forms. The author, with Ono and Rhoades, revisited Ramanujan's asymptotic claim, and established a connection between mock theta functions and quantum modular forms, which were not defined until 90 years later in 2010 by Zagier. Here, we bring together past and present, and study the relationships between mock modular forms and quantum modular forms, with Ramanujan's mock theta functions as motivation. In particular, we highlight recent work of Bringmann–Rolen, Choi–Lim–Rhoades and Griffin–Ono–Rolen in our discussion. This article is largely expository, but not exclusively: we also establish a new interpretation of Ramanujan's radial asymptotic limits in the subject of topology. This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the centenary of his election as FRS’.


Author(s):  
Amanda Folsom

In 1920, Ramanujan studied the asymptotic differences between his mock theta functions and modular theta functions, as [Formula: see text] tends towards roots of unity singularities radially from within the unit disk. In 2013, the bounded asymptotic differences predicted by Ramanujan with respect to his mock theta function [Formula: see text] were established by Ono, Rhoades, and the author, as a special case of a more general result, in which they were realized as special values of a quantum modular form. Our results here are threefold: we realize these radial limit differences as special values of a partial theta function, provide full asymptotic expansions for the partial theta function as [Formula: see text] tends towards roots of unity radially, and explicitly evaluate the partial theta function at roots of unity as simple finite sums of roots of unity.


2019 ◽  
Vol 30 (04) ◽  
pp. 1950023
Author(s):  
Bin Chen

Ramanujan gave a list of seventeen functions which he called mock theta functions. For one of the third-order mock theta functions [Formula: see text], he claimed that as [Formula: see text] approaches an even order [Formula: see text] root of unity [Formula: see text], then [Formula: see text] He also pointed at the existence of similar properties for other mock theta functions. Recently, [J. Bajpai, S. Kimport, J. Liang, D. Ma and J. Ricci, Bilateral series and Ramanujan’s radial limits, Proc. Amer. Math. Soc. 143(2) (2014) 479–492] presented some similar Ramanujan radial limits of the fifth-order mock theta functions and their associated bilateral series are modular forms. In this paper, by using the substitution [Formula: see text] in the Ramanujan’s mock theta functions, some associated false theta functions in the sense of Rogers are obtained. Such functions can be regarded as Eichler integral of the vector-valued modular forms of weight [Formula: see text]. We find two associated bilateral series of the false theta functions with respect to the fifth-order mock theta functions are special modular forms. Furthermore, we explore that the other two associated bilateral series of the false theta functions with respect to the third-order mock theta functions are mock modular forms. As an application, the associated Ramanujan radial limits of the false theta functions are constructed.


Sign in / Sign up

Export Citation Format

Share Document