scholarly journals Data hiding in encryption–compression domain

Author(s):  
O. P. Singh ◽  
A. K. Singh

AbstractThis paper introduces a robust and secure data hiding scheme to transmit grayscale image in encryption-then-compression domain. First, host image is transformed using lifting wavelet transform, Hessenberg decomposition and redundant singular value decomposition. Then, we use appropriate scaling factor to invisibly embed the singular value of watermark data into the lower frequency sub-band of the host image. We also use suitable encryption-then-compression scheme to improve the security of the image. Additionally, de-noising convolutional neural network is performed at extracted mark data to enhance the robustness of the scheme. Experimental results verify the effectiveness of our scheme, including embedding capacity, robustness, invisibility, and security. Further, it is established that our scheme has a better ability to recover concealed mark than conventional ones at low cost.

Author(s):  
Rahul Dixit ◽  
Amita Nandal ◽  
Arvind Dhaka ◽  
Vardan Agarwal ◽  
Yohan Varghese

Background: Nowadays information security is one of the biggest issues of social networks. The multimedia data can be tampered with, and the attackers can then claim its ownership. Image watermarking is a technique that is used for copyright protection and authentication of multimedia. Objective: We aim to create a new and more robust image watermarking technique to prevent illegal copying, editing and distribution of media. Method : The watermarking technique proposed in this paper is non-blind and employs Lifting Wavelet Transform on the cover image to decompose the image into four coefficient matrices. Then Discrete Cosine Transform is applied which separates a selected coefficient matrix into different frequencies and later Singular Value Decomposition is applied. Singular Value Decomposition is also applied to the watermarking image and it is added to the singular matrix of the cover image which is then normalized followed by the inverse Singular Value Decomposition, inverse Discrete Cosine Transform and inverse Lifting Wavelet Transform respectively to obtain an embedded image. Normalization is proposed as an alternative to the traditional scaling factor. Results: Our technique is tested against attacks like rotation, resizing, cropping, noise addition and filtering. The performance comparison is evaluated based on Peak Signal to Noise Ratio, Structural Similarity Index Measure, and Normalized Cross-Correlation. Conclusion: The experimental results prove that the proposed method performs better than other state-of-the-art techniques and can be used to protect multimedia ownership.


Sign in / Sign up

Export Citation Format

Share Document