BRAIN-F: Beacon Rate Adaption Based on Fuzzy Logic in Vehicular Ad Hoc Network

2016 ◽  
Vol 19 (2) ◽  
pp. 301-315 ◽  
Author(s):  
Seyed Ahmad Soleymani ◽  
Abdul Hanan Abdullah ◽  
Mohammad Hossein Anisi ◽  
Ayman Altameem ◽  
Wan Haslina Hasan ◽  
...  
Author(s):  
Ankit Kumar ◽  
Pankaj Dadheech ◽  
Mahender Kumar Beniwal ◽  
Basant Agarwal ◽  
Pawan Kumar Patidar

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1068
Author(s):  
Imran Memon ◽  
Mohammad Kamrul Hasan ◽  
Riaz Ahmed Shaikh ◽  
Jamel Nebhen ◽  
Khairul Azmi Abu Bakar ◽  
...  

Many algorithms use clustering to improve vehicular ad hoc network performance. The expected points of many of these approaches support multiple rounds of data to the roadside unit and constantly include clustering in every round of single-hop data transmission towards the road side unit; however, the clustering in every round maximizes the number of control messages and there could be the possibility of collision and decreases in network energy. Multi-hop transmission prolongs the cluster head node’s lifetime and boosts the network’s efficiency. Accordingly, this article proposes a new fuzzy-clustering-based routing algorithm to benefit from multi-hop transmission clustering simultaneously. This research has analyzed the limitation of clustering in each round, different algorithms were used to perform the clustering, and multi-hop routing was used to transfer the data of every cluster to the road side unit. The fuzzy logic was used to choose the head node of each cluster. Three parameters, (1) distance of each node, (2) remaining energy, and (3) number of neighbors of every node, were considered as fuzzy criteria. The results of this research were compared to various other algorithms in relation to parameters like dead node in every round, first node expire, half node expire, last node expire, and the network lifetime. The simulation results show that the proposed approach outperforms other methods. On the other hand, the vehicular ad hoc network (VANET) environment is vulnerable at the time of data transmission. The NS-2 software tool was used to simulate and evaluate the proposed fuzzy logic opportunistic routing’s performance results concerning end-to-end delay, packet delivery, and network throughput. We compare to the existing protocols, such as fuzzy Internet of Things (IoT), two fuzzy, and Fuzzy-Based Driver Monitoring System (FDMS). The performance comparison also emphasizes an effective utilization of the resources. Simulations on the highway environment show that the suggested protocol has an improved Quality of Service (QoS) efficiency compared to the above published methods in the literature.


Author(s):  
Aarti Sahu ◽  
Laxmi Shrivastava

A wireless ad hoc network is a decentralized kind of wireless network. It is a kind of temporary Computer-to-Computer connection. It is a spontaneous network which includes mobile ad-hoc network (MANET), vehicular ad-hoc network (VANET) and Flying ad-hoc network (FANET). Mobile Ad Hoc Network (MANET) is a temporary network that can be dynamically formed to exchange information by wireless nodes or routers which may be mobile. A VANET is a sub form of MANET. It is an technology that uses vehicles as nodes in a network to make a mobile network. FANET is an ad-hoc network of flying nodes. They can fly independently or can be operated distantly. In this research paper Fuzzy based control approaches in wireless network detects & avoids congestion by developing the ad-hoc fuzzy rules as well as membership functions.In this concept, two parameters have been used as: a) Channel load b) The size of queue within intermediate nodes. These parameters constitute the input to Fuzzy logic controller. The output of Fuzzy logic control (sending rate) derives from the conjunction with Fuzzy Rules Base. The parameter used input channel load, queue length which are produce the sending rate output in fuzzy logic. This fuzzy value has been used to compare the MANET, FANET and VANET in terms of the parameters Throughput, packet loss ratio, end to end delay. The simulation results reveal that usage of Qual Net 6.1 simulator has reduced packet-loss in MANET with comparing of VANET and FANET.


Sign in / Sign up

Export Citation Format

Share Document