Adaptive Pareto Optimal Control of T–S Fuzzy System with Input Constraints and Its Application

Author(s):  
Hu Li ◽  
Bao Song ◽  
Xiaoqi Tang ◽  
Yuanlong Xie ◽  
Xiangdong Zhou
1973 ◽  
Vol 95 (4) ◽  
pp. 356-361 ◽  
Author(s):  
G. Leitmann ◽  
W. Schmitendorf

We consider the optimal control problem with vector-valued criterion (including cooperative games) and seek Pareto-optimal (noninferior) solutions. Scalarization results, together with modified sufficiency theorems from optimal control theory, are used to deduce sufficient conditions for Pareto-optimality. The utilization of these conditions is illustrated by various examples.


2019 ◽  
Vol 5 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Nassar H. S. Haidar

We demonstrate how the therapeutic utility index and the ballistic index for dynamical neutron cancer therapy (NCT) with two opposing neutron beams form a nonlinear optimization problem. In this problem, the modulation frequencies ω and ϖ of the beams and the relative time advance ε are the control variables. A Pareto optimal control vector ω* = (ω*, ϖ*, ε*) for this problem is identified and reported for the first time. The utility index is shown to be remarkably periodically discontinuous in ε, even in the neighborhood of ε*.


2020 ◽  
Vol 37 (4) ◽  
pp. 1524-1547
Author(s):  
Gholam Hosein Askarirobati ◽  
Akbar Hashemi Borzabadi ◽  
Aghileh Heydari

Abstract Detecting the Pareto optimal points on the Pareto frontier is one of the most important topics in multiobjective optimal control problems (MOCPs). This paper presents a scalarization technique to construct an approximate Pareto frontier of MOCPs, using an improved normal boundary intersection (NBI) scalarization strategy. For this purpose, MOCP is first discretized and then using a grid of weights, a sequence of single objective optimal control problems is solved to achieve a uniform distribution of Pareto optimal solutions on the Pareto frontier. The aim is to achieve a more even distribution of Pareto optimal solutions on the Pareto frontier and improve the efficiency of the algorithm. It is shown that in contrast to the NBI method, where Pareto optimality of solutions is not guaranteed, the obtained optimal solution of the scalarized problem is a Pareto optimal solution of the MOCP. Finally, the ability of the proposed method is evaluated and compared with other approaches using several practical MOCPs. The numerical results indicate that the proposed method is more efficient and provides more uniform distribution of solutions on the Pareto frontier than the other methods, such a weighted sum, normalized normal constraint and NBI.


Sign in / Sign up

Export Citation Format

Share Document