scholarly journals Impact of Model Simplification on Optimal Control of Combustion Engine and Electric Vehicles Considering Control Input Constraints

Author(s):  
Jihun Han ◽  
Jackeline Rios-Torres ◽  
Ardalan Vahidi ◽  
Antonio Sciarretta
2020 ◽  
pp. 107754632092915
Author(s):  
Difan Tang ◽  
Lei Chen ◽  
Zhao F Tian ◽  
Eric Hu

This study deals with improving airfoil active flutter suppression under control-input constraints from the optimal control perspective by proposing a novel optimal neural-network control. The proposed approach uses a modified value function approximation dynamically tuned by an extended Kalman filter to solve the Hamilton–Jacobi–Bellman equality online for continuously improved optimal control to address optimality in parameter-varying nonlinear systems. Control-input constraints are integrated into the controller synthesis by introducing a generalized nonquadratic cost function for control inputs. The feasibility of using a performance index involving the nonquadratic control-input cost with the modified value function approximation is examined through the Lyapunov stability analysis. Wind tunnel experiments were conducted for controller validation, where an optimal controller synthesized offline via linear parameter-varying technique was used as a benchmark and compared. It is shown, both theoretically and experimentally, that the proposed method can effectively improve airfoil active flutter suppression under control-input constraints.


Author(s):  
Kwee-Yan Teh ◽  
Christopher F. Edwards

Entropy generation due to combustion destroys as much as a third of the theoretical maximum work that could have been extracted from the fuel supplied to an engine. Yet, there is no fundamental study in the literature that addresses the question of how this quantity can be minimized so as to improve combustion engine efficiency. This paper fills the gap by establishing the minimum entropy generated in an adiabatic, homogeneous combustion piston engine. The minimization problem is cast as a dynamical system optimal control problem, with the piston velocity profile serving as the control input function. The closed-form switching condition for the optimal bang-bang control is determined based on Pontryagin’s maximum principle. The switched control is shown to be a function of the pressure difference between the instantaneous thermodynamic state of the system and its corresponding equilibrium thermodynamic state at the same internal energy and volume. At optimality, the entropy difference between these two thermodynamic states is shown to be a Lyapunov function. In thermodynamic terms, the optimal solution reduces to a strategy of equilibrium entropy minimization. This result is independent of the underlying combustion mechanism. It precludes the possibility of matching the piston motion in some sophisticated fashion to the nonlinear combustion kinetics in order to improve the engine efficiency. For illustration, a series of numerical examples are presented that compare the optimal bang-bang solution with the nonoptimal conventional solution based on slider-crank piston motion. Based on the solution for minimum entropy generation, a bound for the maximum expansion work that the piston engine is capable of producing is also deduced.


Author(s):  
Kwee-Yan Teh ◽  
Christopher F. Edwards

Entropy generation due to combustion destroys as much as a third of the theoretical maximum work that could have been extracted from the fuel supplied to an engine. In this paper, an optimal control problem is set up to minimize the entropy generation in an adiabatic internal combustion engine, with the piston velocity profile serving as the control input function. The compression ratio of the engine is fixed, thereby imposing a constraint on the piston motion. The switching conditions for the optimal bang-off-bang control is determined based on Pontryagin's maximum principle. In thermodynamic terms, the optimal solution reduces to a strategy of equilibrium entropy minimization. This result is independent of the underlying combustion mechanism.


Author(s):  
Kunal Wagh ◽  
Pankaj Dhatrak

The transport industry is a major contributor to both local pollution and greenhouse gas emissions (GHGs). The key challenge today is to mitigate the adverse impacts on the environment caused by road transportation. The volatile market prices and diminishing supplies of fuel have led to an unprecedented interest in battery electric vehicles (BEVs). In addition, improvements in motor efficiencies and significant advances in battery technology have made it easier for BEVs to compete with internal combustion engine (ICE) vehicles. This paper describes and assesses the latest technologies in different elements of the BEV: powertrain architectures, propulsion and regeneration systems, energy storage systems and charging techniques. The current and future trends of these technologies have been reviewed in detail. Finally, the key issue of electric vehicle component recycling (battery, motor and power electronics) has been discussed. Global emission regulations are pushing the industry towards zero or ultra-low emission vehicles. Thus, by 2025, most cars must have a considerable level of powertrain electrification. As the market share of electric vehicles increases, clear trends have emerged in the development of powertrain systems. However, some significant barriers must be overcome before appreciable market penetration can be achieved. The objective of the current study is to review and provide a complete picture of the current BEV technology and a framework to assist future research in the sector.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1046
Author(s):  
Maksymilian Mądziel ◽  
Tiziana Campisi ◽  
Artur Jaworski ◽  
Giovanni Tesoriere

Urban agglomerations close to road infrastructure are particularly exposed to harmful exhaust emissions from motor vehicles and this problem is exacerbated at road intersections. Roundabouts are one of the most popular intersection designs in recent years, making traffic flow smoother and safer, but especially at peak times they are subject to numerous stop-and-go operations by vehicles, which increase the dispersion of emissions with high particulate matter rates. The study focused on a specific area of the city of Rzeszow in Poland. This country is characterized by the current composition of vehicle fleets connected to combustion engine vehicles. The measurement of the concentration of particulate matter (PM2.5 and PM10) by means of a preliminary survey campaign in the vicinity of the intersection made it possible to assess the impact of vehicle traffic on the dispersion of pollutants in the air. The present report presents some strategies to be implemented in the examined area considering a comparison of current and project scenarios characterized both by a modification of the road geometry (through the introduction of a turbo roundabout) and the composition of the vehicular flow with the forthcoming diffusion of electric vehicles. The study presents an exemplified methodology for comparing scenarios aimed at optimizing strategic choices for the local administration and also shows the benefits of an increased electric fleet. By processing the data with specific tools and comparing the scenarios, it was found that a conversion of 25% of the motor vehicles to electric vehicles in the current fleet has reduced the concentration of PM10 by about 30% along the ring road, has led to a significant reduction in the length of particulate concentration of the motorway, and it has also led to a significant reduction in the length of the particulate concentration for the access roads to the intersection.


2021 ◽  
Vol 11 (11) ◽  
pp. 5001
Author(s):  
Robin Masser ◽  
Karl Heinz Hoffmann

Energy savings in the traffic sector are of considerable importance for economic and environmental considerations. Recuperation of mechanical energy in commercial vehicles can contribute to this goal. One promising technology rests on hydraulic systems, in particular for trucks which use such system also for other purposes such as lifting cargo or operating a crane. In this work the potential for energy savings is analyzed for commercial vehicles with tipper bodies, as these already have a hydraulic onboard system. The recuperation system is modeled based on endoreversible thermodynamics, thus providing a framework in which realistic driving data can be incorporated. We further used dissipative engine setups for modeling both the hydraulic and combustion engine of the hybrid drive train in order to include realistic efficiency maps. As a result, reduction in fuel consumption of up to 26% as compared to a simple baseline recuperation strategy can be achieved with an optimized recuperation control.


Sign in / Sign up

Export Citation Format

Share Document