scholarly journals A Nonlinear Option Pricing Model Through the Adomian Decomposition Method

2015 ◽  
Vol 2 (4) ◽  
pp. 453-467 ◽  
Author(s):  
Oswaldo González-Gaxiola ◽  
Juan Ruíz de Chávez ◽  
José Antonio Santiago
Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 780-785 ◽  
Author(s):  
Sunday O. Edeki ◽  
Tanki Motsepa ◽  
Chaudry Masood Khalique ◽  
Grace O. Akinlabi

Abstract The Greek parameters in option pricing are derivatives used in hedging against option risks. In this paper, the Greeks of the continuous arithmetic Asian option pricing model are derived. The derivation is based on the analytical solution of the continuous arithmetic Asian option model obtained via a proposed semi-analytical method referred to as Laplace-Adomian decomposition method (LADM). The LADM gives the solution in explicit form with few iterations. The computational work involved is less. Nonetheless, high level of accuracy is not neglected. The obtained analytical solutions are in good agreement with those of Rogers & Shi (J. of Applied Probability 32: 1995, 1077-1088), and Elshegmani & Ahmad (ScienceAsia, 39S: 2013, 67–69). The proposed method is highly recommended for analytical solution of other forms of Asian option pricing models such as the geometric put and call options, even in their time-fractional forms. The basic Greeks obtained are the Theta, Delta, Speed, and Gamma which will be of great help to financial practitioners and traders in terms of hedging and strategy.


2018 ◽  
Vol 13 (1) ◽  
pp. 12 ◽  
Author(s):  
M. Yavuz ◽  
N. Özdemir

In this work, we have derived an approximate solution of the fractional Black-Scholes models using an iterative method. The fractional differentiation operator used in this paper is the well-known conformable derivative. Firstly, we redefine the fractional Black-Scholes equation, conformable fractional Adomian decomposition method (CFADM) and conformable fractional modified homotopy perturbation method (CFMHPM). Then, we have solved the fractional Black-Scholes (FBS) and generalized fractional Black-Scholes (GFBS) equations by using the proposed methods, which can analytically solve the fractional partial differential equations (FPDE). In order to show the efficiencies of these methods, we have compared the numerical and exact solutions of these two option pricing problems by using in pricing the actual market data. Also, we have found out that the proposed models are very efficient and powerful techniques in finding approximate solutions of the fractional Black-Scholes models which are considered in conformable sense.


1999 ◽  
Vol 2 (4) ◽  
pp. 75-116 ◽  
Author(s):  
Jin-Chuan Duan ◽  
Geneviève Gauthier ◽  
Jean-Guy Simonato

Sign in / Sign up

Export Citation Format

Share Document