Numerical Solution of a Model for Stochastic Polymer Equation Driven by Space–Time Brownian Motion via Homotopy Perturbation Method

2015 ◽  
Vol 2 (4) ◽  
pp. 485-498 ◽  
Author(s):  
F. Hosseini Shekarabi ◽  
M. Khodabin
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yanqin Liu

We consider the initial stage of space-time fractional generalized biological equation in radial symmetry. Dimensionless multiorder fractional nonlinear equation was first given, and approximate solutions were derived in the form of series using the homotopy perturbation method with a new modification. And the influence of fractional derivative is also discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ravi Shanker Dubey ◽  
Badr Saad T. Alkahtani ◽  
Abdon Atangana

An efficient approach based on homotopy perturbation method by using Sumudu transform is proposed to solve some linear and nonlinear space-time fractional Fokker-Planck equations (FPEs) in closed form. The space and time fractional derivatives are considered in Caputo sense. The homotopy perturbation Sumudu transform method (HPSTM) is a combined form of Sumudu transform, homotopy perturbation method, and He’s polynomials. The nonlinear terms can be easily handled by the use of He’s polynomials. Some examples show that the HPSTM is an effective tool for solving many space time fractional partial differential equations.


2012 ◽  
Vol 09 ◽  
pp. 326-333 ◽  
Author(s):  
M. S. H. CHOWDHURY ◽  
M. M. RAHMAN

In this paper, we suggest a method to solve the multispecies Lotka-Voltera equations. The suggested method, which we call modified homotopy perturbation method, can be considered as an extension of the homotopy perturbation method (HPM) which is very efficient in solving a varety of differential and algebraic equations. The HPM is modified in order to obtain the approximate solutions of Lotka-Voltera equation response in a sequence of time intervals. In particular, the example of two species is considered. The accuracy of this method is examined by comparison with the numerical solution of the Runge-Kutta-Verner method. The results prove that the modified HPM is a powerful tool for the solution of nonlinear equations.


Sign in / Sign up

Export Citation Format

Share Document