Inverse Hybrid Linear Multistep Methods for Solving the Second Order Initial Value Problems in Ordinary Differential Equations

Author(s):  
Oluwasegun M. Ibrahim ◽  
Monday N. O. Ikhile
Author(s):  
Y. Skwame ◽  
J. Sabo ◽  
M. Mathew

A general one-step hybrid block method with equidistant of order 6 has been successfully developed for the direct solution of second order IVPs in this article. Numerical analysis shows that the developed method is consistent and zero-stable which implies its convergence. The analysis of the new method is examined on two highly and mildly stiff second-order initial value problems to illustrate the efficiency of the method. It is obvious that our method performs better than the existing method within which we compare our result with. Hence, the approach is an adequate one for solving special second order IVPs.


1967 ◽  
Vol 63 (2) ◽  
pp. 461-472 ◽  
Author(s):  
J. M. Watt

AbstractThe order and asymptotic form of the error of a general class of numerical method for solving the initial value problem for systems of ordinary differential equations is considered. Previously only the convergence of the methods, which include Runge-Kutta and linear multistep methods, has been discussed.


Sign in / Sign up

Export Citation Format

Share Document