direct solution
Recently Published Documents


TOTAL DOCUMENTS

715
(FIVE YEARS 60)

H-INDEX

46
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Biao Zhang ◽  
Wei-Jian Peng ◽  
Jian Li ◽  
Zhi-Hao Li ◽  
Chuan-Long Xu

The rapid and accurate measurement of the flame temperature distribution is of great significance to the structural design and health diagnosis of the engine. Aiming at the low reconstruction efficiency of traditional flame temperature distribution reconstruction algorithms, a Direct Solution algorithm for flame temperature distribution reconstruction is proposed in this paper based on the structural characteristics of the reconstruction equations. By setting several numerical cases, the performance of the Direct Solution algorithm and some commonly used traditional algorithms, such as Simultaneous Algebraic Reconstruction Technique (SART), Least Squares QR-factorization (LSQR) algorithm, Non-Negative Least Squares QR-factorization (NNLS) algorithm, is compared in the reconstruction of the flame temperature distribution. The results show that the efficiency of the Direct Solution method is 169.4, 7.4, and 3483.3 times higher than that of the SART, LSQR, and NNLS algorithms under the condition of 40 × 40 grids. In addition, with the increase of the number of grids, the growth rate of the reconstruction time of the Direct Solution algorithm is much lower than that of other algorithms. The overall reconstruction accuracy of the Direct Solution algorithm is better than that of SART and LSQR algorithms. This shows that it has an excellent comprehensive performance and has a great application prospect in the rapid reconstruction of the temperature distribution.


2021 ◽  
Vol 2106 (1) ◽  
pp. 012029
Author(s):  
Nopiyana ◽  
P Affandi ◽  
A S Lestia

Abstract Transportation problems are related to activities aimed at minimizing the cost of distributing goods from a source to a destination. One of the methods used to solve transportation problems is the ASM Method as a method capable of producing optimal direct solutions without having to determine the initial basic feasible solution first. Determination of the allocation of goods in the ASM Method uses a reduced cost of 0 by calculating the maximum amount in the allocation of goods. Then the ASM method is modified so that the iteration used is simpler in obtaining the optimal direct solution without calculating the maximum number of row and column elements. The method is called Modified ASM Method. This method also provides more optimal results than the ASM method. This research aimed to solve transportation problems using the Modified ASM method to produce optimal solutions directly. The research procedure identifies and forms a model of transportation problems (variable decisions, objective functions and constraint functions), identifies types of transportation problems (balanced or unbalanced), and obtains direct solutions by solving transportation problems using the Modified ASM method. This research shows that the Modified ASM method successfully solves the problem of balanced and unbalanced transportation by producing optimal solutions in a simpler way than the ASM method.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bruce Ebanks

Abstract The primary object of study is the “cosine-sine” functional equation f(xy) = f(x)g(y)+g(x)f(y)+h(x)h(y) for unknown functions f, g, h : S → ℂ, where S is a semigroup. The name refers to the fact that it contains both the sine and cosine addition laws. This equation has been solved on groups and on semigroups generated by their squares. Here we find the solutions on a larger class of semigroups and discuss the obstacles to finding a general solution for all semigroups. Examples are given to illustrate both the results and the obstacles. We also discuss the special case f(xy) = f(x)g(y) + g(x)f(y) − g(x)g(y) separately, since it has an independent direct solution on a general semigroup. We give the continuous solutions on topological semigroups for both equations.


2021 ◽  
Vol 2056 (1) ◽  
pp. 012007
Author(s):  
S S Sitnikov ◽  
F G Tcheremissine ◽  
T A Sazykina

Abstract Two-dimensional binary gas mixture outflow from a vessel into vacuum through a thin slit is studied on the basis of direct solution of the Boltzmann kinetic equation. For evaluation of collision integrals in the Boltzmann equation a conservative projection method is used. Numerical simulation of a two-dimensional argon-neon gas mixture outflow from a vessel into vacuum was performed. Graphs of mixture components flow rate dependence on time during the flow formation, as well as fields of molecular density and temperature for steady-state regime, were obtained.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kerstin Jedvert ◽  
Linnea Viklund ◽  
Mårten Alkhagen ◽  
Tobias Köhnke ◽  
Hans Theliander

Abstract Nonwovens are increasing in demand due to their versatility which enables use in a broad range of applications. Most nonwovens are still produced from fossil-based resources and there is thus a need to develop competitive materials from renewable feedstock. In this work, nonwovens are produced from cellulose via a direct solution blowing method. Cellulose was dissolved using the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc) and was regenerated into nonwovens by coagulation in water. The properties of such nonwovens were previously rather stiff and papery-like and the aim of this work was to improve the softness and feel of the materials by simple adjustments of the post-processing steps, i. e. washing and drying. It was shown that by primarily changing the drying method, it was possible to create a much softer and bulkier material using the same solution blowing parameters.


2021 ◽  
Vol 5 (2) ◽  
pp. 365-376
Author(s):  
Ezekiel Omole ◽  
A. A. Aigbiremhon ◽  
Abosede Funke Familua

In this paper, we developed a new three-step method for numerical solution of third order ordinary differential equations. Interpolation and collocation methods were used by choosing interpolation points at  steps points using power series, while collocation points at  step points, using a combination of powers series and perturbation terms gotten from the Legendre polynomials, giving rise to a polynomial of degree and equations. All the analysis on the method derived shows that it is zero-stable, convergent and the region of stability is absolutely stable. Numerical examples were provided to test the performance of the method. Results obtained when compared with existing methods in the literature, shows that the method is accurate and efficient  


2021 ◽  
Vol 4 (4) ◽  
pp. 477-483
Author(s):  
O. E. Abolarin ◽  
B. G. Ogunware ◽  
A. F. Adebisi ◽  
S. O. Ayinde

The development and application of an implicit hybrid block method for the direct solution of second order ordinary differential equations with given initial conditions is shown in this research. The derivation of the three-step scheme was done through collocation and interpolation of power series approximation to give a continuous linear multistep method. The evaluation of the continuous method at the grid and off grid points formed the discrete block method. The basic properties of the method such as order, error constant, zero stability, consistency and convergence were properly examined. The new block method produced more accurate results when compared with similar works carried out by existing authors on the solution of linear and non-linear second order ordinary differential equations


Sign in / Sign up

Export Citation Format

Share Document