Calculations of the Flow Noise from a Turbulent Boundary Layer for Acoustic Vector Hydrophones in the Flank Array

Author(s):  
Hongyue Chen ◽  
Zhongrui Zhu ◽  
Desen Yang
1989 ◽  
Vol 208 ◽  
pp. 193-223 ◽  
Author(s):  
A. P. Dowling

The installation of large-eddy breakup devices (LEBUs) or ‘flow manipulators’ in a turbulent boundary layer over a rigid plane surface is known to lead to reductions in skin-friction coefficient, turbulence intensity and fluctuating Reynolds stress. We investigate the effect of such devices on the surface pressure spectrum and the far-field sound radiation. A model problem, in which a two-dimensional elliptical vortex is convected past a LEBU, is solved analytically in the low-Mach-number limit. The main noise source mechanisms are identified in this idealized problem and we go on to obtain scaling laws for the sound produced by a turbulent boundary-layer flow over a LEBU. The introduction of a LEBU reduces the strength of the Lighthill quadrupole source terms, but it produces an additional dipole source. However, the pressure fluctuations in this dipole field decay rapidly with distance from a LEBU, and we find that an array of LEBU's could have a beneficial effect on the flow noise for radian frequencies which are large in comparison with c/30Δ, where c is the sound speed and Δ denotes the boundary-layer thickness. At lower frequencies the LEBUs are predicted to increase the flow noise.


Flow noise originating in the turbulent boundary layer (TBL) often severely limits the performance of towed sonar cylinder and therefore it is necessary to predict this noise for the design of efficient towed cylinder. This paper presents large eddy simulation methodology to establish the TBL properties and wall pressure fluctuations on a 3 m long cylinder with length to diameter ratio of 315 in the operating speed of 11.4 m/s in air. The computed flow induced sound is compared with experimental measurement available in the literature successfully. The effectiveness of scaling the flow noise spectra with diameter and tow speed is discussed and non-dimensional wall pressure spectra presented with respect to non-dimensional frequency. The overall sound pressure levels are also compared with experimental data that show good accuracy achieved by the proposed numerical methodology.


Sign in / Sign up

Export Citation Format

Share Document