Robust Finite-Time Contractive Fault Tolerant Control of Uncertain Nonlinear Network-Based Systems with Adaptive Event-Triggered Communication Scheme

Author(s):  
Farzaneh Jani ◽  
Farzad Hashemzadeh ◽  
Mahdi Baradarannia ◽  
Hamed Kharrati
2017 ◽  
Vol 11 (1) ◽  
pp. 68-86 ◽  
Author(s):  
Jun Wang ◽  
Xiaowan Yao ◽  
Wei Li

In this paper, the authors aimed to analyze uncertain nonlinear networked control systems (NCS) under discrete event-triggered communication scheme (DETCS), in which an integrated design methodology between robust fault detection observer and active fault-tolerant controller is proposed. Moreover, the problem of hybrid active–passive robust fault-tolerant control, which integrated passive fault-tolerant control, fault detection, and controller reconstruction, is researched. In consideration of the impact of uncertainties and network-induced delay on system performance, a new class of uncertain nonlinear NCS fault model is established based on T-S fuzzy model. By employing Lyapunov stability theory, H∞ control theory, and linear matrix inequality method, the fault detection observer and hybrid fault-tolerant controller are both appropriately designed. In addition, the sufficient condition that guaranteed the asymptotically robust stability of nonlinear NCS against any actuator failures is deduced. Finally, a numerical simulation is provided to show the effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document