Optimizing the Replenishment Cycle and Selling Price for an Inventory Model Under Carbon Emission Regulation and Partially Permissible Delay in Payment

Author(s):  
Arash Sepehri
2012 ◽  
Vol 1 (2) ◽  
pp. 53-79
Author(s):  
Chandra K. Jaggi ◽  
Sarla Pareek ◽  
Anuj Sharma ◽  
Nidhi

In this paper, a fuzzy inventory model is formulated for deteriorating items with price dependent demand under the consideration of permissible delay in payment. A two parameter Weibull distribution is taken to represent the time to deterioration. Shortages are allowed and completely backlogged. For Fuzzification of the model, the demand rate, holding cost, unit purchase cost, deterioration rate, ordering cost, shortage cost, interest earn and interest paid are assumed to be triangular fuzzy numbers. As a result, the profit function will be derived in fuzzy sense in order to obtain the optimal stock-in period, cycle length and the selling price. The graded mean integration method is used to defuzzify the profit function. Then, to test the validity of the model a numerical example is considered and solved. Finally, to study the effect of changes of different parameters on the optimal solution i.e. average profit, order quantity, stock-in period, cycle length and selling price, sensitivity analysis are performed.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Hui-Ling Yang

In today’s competitive markets, selling price and purchasing cost are usually fluctuating with economic conditions. Both selling price and purchasing cost are vital to the profitability of a firm. Therefore, in this paper, I extend the inventory model introduced by Teng and Yang (2004) to allow for not only the selling price but also the purchasing cost to change from one replenishment cycle to another during a finite time horizon. The objective is to find the optimal replenishment schedule and pricing policy to obtain the profit as maximum as possible. The conditions that lead to a maximizing solution guarantee that the existence, uniqueness, and global optimality are proposed. An efficient solution procedure and some theoretical results are presented. Finally, numerical examples for illustration and sensitivity analysis for managerial decision making are also performed.


Author(s):  
Mamta Kumari ◽  
Pijus Kanti De

This paper presents an EOQ model where demand is dependent upon time and selling price. In the proposed model of inventory, the retailer allows its unsatisfied customers to return their product whereas the manufacturer offers a full trade credit policy to the retailer. To make our model realistic, we have assumed that the product returned can be resold with the same selling price. Number of returns is a function of demand. In this proposed inventory model considering deterioration, the retailer does not fully reimburse its customers for the returned product. The primary purpose of this inventory model is to determine the optimal selling price, optimal order quantity, and optimal replenishment cycle length in order to maximize the retailer’s total profit earned per unit time. A numerical example is also presented and a sensitivity analysis is carried to highlight the findings of the suggested inventory model.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ranu Singh ◽  
Vinod Kumar Mishra

Purpose Carbon emission is a significant issue for the current business market and global warming. Nowadays, most countries have focused to reduce the environmental impact of business with durable financial benefits. The purpose of this study is to optimize the entire cost functions with carbon emission and to find the sustainable optimal ordering quantity for retailers. Design/methodology/approach This paper illustrates a sustainable inventory model having a set of two non-instantaneous substitutable deteriorating items under joint replenishment with carbon emission. In this model demand and deterioration rate are considered as deterministic, constant and triangular fuzzy numbers. The objective is to find the optimal ordering quantity for retailers and to minimize the total cost function per unit time with carbon emission. The model is then solved with the help of Maple software. Findings This paper presents a solution method and also develop an algorithm to determine the order quantities which optimize the total cost function. A numerical experiment illustrates the improvement in optimal total cost of the inventory model with substitution over without substitution. The graphical results show the convexity of the cost function. Finally, sensitivity analysis is given to get the impact of parameters and validity of the model. Originality/value This study considers a set of two non-instantaneous substitutable deteriorating items under joint replenishment with carbon emission. From the literature review, in the authors’ knowledge no researcher has undergone this kind of study.


2006 ◽  
Vol 16 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Kumar Mandal ◽  
Kumar Roy ◽  
Manoranjan Maiti

In this paper, a multi-item inventory model with space constraint is developed in both crisp and fuzzy environment. A profit maximization inventory model is proposed here to determine the optimal values of demands and order levels of a product. Selling price and unit price are assumed to be demand-dependent and holding and set-up costs sock dependent. Total profit and warehouse space are considered to be vague and imprecise. The impreciseness in the above objective and constraint goals has been expressed by fuzzy linear membership functions. The problem is then solved using modified geometric programming method. Sensitivity analysis is also presented here.


2022 ◽  
Vol 6 (1) ◽  
pp. 26
Author(s):  
Shirin Sultana ◽  
Abu Hashan Md Mashud ◽  
Yosef Daryanto ◽  
Sujan Miah ◽  
Adel Alrasheedi ◽  
...  

Nowadays, more and more consumers consider environmentally friendly products in their purchasing decisions. Companies need to adapt to these changes while paying attention to standard business systems such as payment terms. The purpose of this study is to optimize the entire profit function of a retailer and to find the optimal selling price and replenishment cycle when the demand rate depends on the price and carbon emission reduction level. This study investigates an economic order quantity model that has a demand function with a positive impact of carbon emission reduction besides the selling price. In this model, the supplier requests payment in advance on the purchased cost while offering a discount according to the payment in the advanced decision. Three different types of payment-in-advance cases are applied: (1) payment in advance with equal numbers of instalments, (2) payment in advance with a single instalment, and (3) the absence of payment in advance. Numerical examples and sensitivity analysis illustrate the proposed model. Here, the total profit increases for all three cases with higher values of carbon emission reduction level. Further, the study finds that the profit becomes maximum for case 2, whereas the selling price and cycle length become minimum. This study considers the sustainable inventory model with payment-in-advance settings when the demand rate depends on the price and carbon emission reduction level. From the literature review, no researcher has undergone this kind of study in the authors’ knowledge.


Sign in / Sign up

Export Citation Format

Share Document