scholarly journals Generalized Dobrushin Coefficients on Banach Spaces

Author(s):  
Wojciech Bartoszek ◽  
Marek Beśka ◽  
Wiktor Florek

AbstractThe asymptotic behavior of iterates of bounded linear operators (not necessarily positive), acting on Banach spaces, is studied. Through the Dobrushin ergodicity coefficient, we generalize some ergodic theorems obtained earlier for classical Markov semigroups acting on $$L^1$$ L 1 (or positive operators on abstract state spaces).

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Tanja Eisner

We present a simple way to produce good weights for several types of ergodic theorem including the Wiener-Wintner type multiple return time theorem and the multiple polynomial ergodic theorem. These weights are deterministic and come from orbits of certain bounded linear operators on Banach spaces. This extends the known results for nilsequences and return time sequences of the form for a measure preserving system and , avoiding in the latter case the problem of finding the full measure set of appropriate points .


Author(s):  
Hans-Olav Tylli

Special operator-ideal approximation properties (APs) of Banach spaces are employed to solve the problem of whether the distance functions S ↦ dist(S*, I(F*, E*)) and S ↦ dist(S, I*(E, F)) are uniformly comparable in each space L(E, F) of bounded linear operators. Here, I*(E, F) = {S ∈ L(E, F) : S* ∈ I(F*, E*)} stands for the adjoint ideal of the closed operator ideal I for Banach spaces E and F. Counterexamples are obtained for many classical surjective or injective Banach operator ideals I by solving two resulting ‘asymmetry’ problems for these operator-ideal APs.


2016 ◽  
Vol 160 (3) ◽  
pp. 413-421 ◽  
Author(s):  
TOMASZ KANIA ◽  
NIELS JAKOB LAUSTSEN

AbstractA recent result of Leung (Proceedings of the American Mathematical Society, 2015) states that the Banach algebra ℬ(X) of bounded, linear operators on the Banach space X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓ1 contains a unique maximal ideal. We show that the same conclusion holds true for the Banach spaces X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓp and X = (⊕n∈$\mathbb{N}$ ℓ1n)ℓp whenever p ∈ (1, ∞).


1969 ◽  
Vol 16 (3) ◽  
pp. 227-232 ◽  
Author(s):  
J. C. Alexander

In (4) Vala proves a generalization of Schauder's theorem (3) on the compactness of the adjoint of a compact linear operator. The particular case of Vala's result that we shall be concerned with is as follows. Let t1 and t2 be non-zero bounded linear operators on the Banach spaces Y and X respectively, and denote by 1T2 the operator on B(X, Y) defined by


1994 ◽  
Vol 46 (4) ◽  
pp. 854-871 ◽  
Author(s):  
Terrance Quinn

AbstractIn recent years there has been a growing interest in problems of factorization for bounded linear operators. We first show that many of these problems properly belong to the category of C*-algebras. With this interpretation, it becomes evident that the problem is fundamental both to the structure of operator algebras and the elements therein. In this paper we consider the direct integral algebra with separable and infinite dimensional. We generalize a theorem of Wu (1988) and characterize those decomposable operators which are products of non-negative decomposable operators. We do this by first showing that various results on operator ranges may be generalized to “measurable fields of operator ranges”.


1982 ◽  
Vol 25 (1) ◽  
pp. 78-81 ◽  
Author(s):  
Moshe Feder

AbstractLet X and Y be Banach spaces, L(X, Y) the space of bounded linear operators from X to Y and C(X, Y) its subspace of the compact operators. A sequence {Ti} in C(X, Y) is said to be an unconditional compact expansion of T ∈ L (X, Y) if ∑ Tix converges unconditionally to Tx for every x ∈ X. We prove: (1) If there exists a non-compact T ∈ L(X, Y) admitting an unconditional compact expansion then C(X, Y) is not complemented in L(X, Y), and (2) Let X and Y be classical Banach spaces (i.e. spaces whose duals are some LP(μ) spaces) then either L(X, Y) = C(X, Y) or C(X, Y) is not complemented in L(X, Y).


Sign in / Sign up

Export Citation Format

Share Document