Products of Decomposable Positive Operators

1994 ◽  
Vol 46 (4) ◽  
pp. 854-871 ◽  
Author(s):  
Terrance Quinn

AbstractIn recent years there has been a growing interest in problems of factorization for bounded linear operators. We first show that many of these problems properly belong to the category of C*-algebras. With this interpretation, it becomes evident that the problem is fundamental both to the structure of operator algebras and the elements therein. In this paper we consider the direct integral algebra with separable and infinite dimensional. We generalize a theorem of Wu (1988) and characterize those decomposable operators which are products of non-negative decomposable operators. We do this by first showing that various results on operator ranges may be generalized to “measurable fields of operator ranges”.

1974 ◽  
Vol 26 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Carl Pearcy ◽  
Norberto Salinas

Let be a fixed separable, infinite dimensional complex Hilbert space, and let () denote the algebra of all (bounded, linear) operators on . The ideal of all compact operators on will be denoted by and the canonical quotient map from () onto the Calkin algebra ()/ will be denoted by π.Some open problems in the theory of extensions of C*-algebras (cf. [1]) have recently motivated an increasing interest in the class of all operators in () whose self-commuta tor is compact.


2015 ◽  
Vol 17 (05) ◽  
pp. 1450042
Author(s):  
Weijuan Shi ◽  
Xiaohong Cao

Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. T ∈ B(H) satisfies Weyl's theorem if σ(T)\σw(T) = π00(T), where σ(T) and σw(T) denote the spectrum and the Weyl spectrum of T, respectively, π00(T) = {λ ∈ iso σ(T) : 0 < dim N(T - λI) < ∞}. T ∈ B(H) is said to have the stability of Weyl's theorem if T + K satisfies Weyl's theorem for all compact operator K ∈ B(H). In this paper, we characterize the operator T on H satisfying the stability of Weyl's theorem holds for T2.


2014 ◽  
Vol 57 (3) ◽  
pp. 709-718 ◽  
Author(s):  
ABDELLATIF BOURHIM ◽  
JAVAD MASHREGHI

AbstractLet X and Y be infinite-dimensional complex Banach spaces, and ${\mathcal B}$(X) (resp. ${\mathcal B}$(Y)) be the algebra of all bounded linear operators on X (resp. on Y). For an operator T ∈ ${\mathcal B}$(X) and a vector x ∈ X, let σT(x) denote the local spectrum of T at x. For two nonzero vectors x0 ∈X and y0 ∈ Y, we show that a map ϕ from ${\mathcal B}$(X) onto ${\mathcal B}$(Y) satisfies $ \sigma_{\varphi(T)\varphi(S)}(y_0)~=~\sigma_{TS}(x_0),~(T,~S\in{\mathcal B}(X)), $ if and only if there exists a bijective bounded linear mapping A from X into Y such that Ax0 = y0 and either ϕ(T) = ATA−1 or ϕ(T) = -ATA−1 for all T ∈ ${\mathcal B}$(X).


Author(s):  
Fuad Kittaneh

AbstractWe prove the following statements about bounded linear operators on a complex separable infinite dimensional Hilbert space. (1) Let A and B* be subnormal operators. If A2X = XB2 and A3X = XB3 for some operator X, then AX = XB. (2) Let A and B* be subnormal operators. If A2X – XB2 ∈ Cp and A3X – XB3 ∈ Cp for some operator X, then AX − XB ∈ C8p. (3) Let T be an operator such that 1 − T*T ∈ Cp for some p ≥1. If T2X − XT2 ∈ Cp and T3X – XT3 ∈ Cp for some operator X, then TX − XT ∈ Cp. (4) Let T be a semi-Fredholm operator with ind T < 0. If T2X − XT2 ∈ C2 and T3X − XT3 ∈ C2 for some operator X, then TX − XT ∈ C2.


2005 ◽  
Vol 12 (4) ◽  
pp. 717-726
Author(s):  
Salah Mecheri

Abstract Let 𝐻 be a separable infinite dimensional complex Hilbert space, and let 𝔹(𝐻) denote the algebra of all bounded linear operators on 𝐻. Let 𝐴, 𝐵 be operators in 𝔹(𝐻). We define the generalized derivation δ 𝐴, 𝐵 : 𝔹(𝐻) ↦ 𝔹(𝐻) by δ 𝐴, 𝐵(𝑋) = 𝐴𝑋 – 𝑋𝐵. In this paper we consider the question posed by Turnsek [Publ. Math. Debrecen 63: 293–304, 2003], when ? We prove that this holds in the case where 𝐴 and 𝐵 satisfy the Fuglede–Putnam theorem. Finally, we apply the obtained results to double operator integrals.


Author(s):  
Milan Hladnik

AbstractSpectrality and prespectrality of elementary operators , acting on the algebra B(k) of all bounded linear operators on a separable infinite-dimensional complex Hubert space K, or on von Neumann-Schatten classes in B(k), are treated. In the case when (a1, a2, …, an) and (b1, b2, …, bn) are two n—tuples of commuting normal operators on H, the complete characterization of spectrality is given.


2013 ◽  
Vol 59 (1) ◽  
pp. 163-172
Author(s):  
Salah Mecheri

Abstract Let H be a separable infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators on H. Let A;B be operators in B(H). In this paper we prove that if A is quasi-class A and B* is invertible quasi-class A and AX = XB, for some X ∈ C2 (the class of Hilbert-Schmidt operators on H), then A*X = XB*. We also prove that if A is a quasi-class A operator and f is an analytic function on a neighborhood of the spectrum of A, then f(A) satisfies generalized Weyl's theorem. Other related results are also given.


2017 ◽  
Vol 11 (01) ◽  
pp. 1850002 ◽  
Author(s):  
M. Oudghiri ◽  
K. Souilah

Let [Formula: see text] be the algebra of all bounded linear operators on an infinite-dimensional complex or real Banach space [Formula: see text]. We prove that a bijective bicontinuous map [Formula: see text] on [Formula: see text] preserves the difference of group invertible operators in both directions if and only if [Formula: see text] is either of the form [Formula: see text] or of the form [Formula: see text], where [Formula: see text] is a nonzero scalar, [Formula: see text] and [Formula: see text] are two bounded invertible linear or conjugate linear operators.


Sign in / Sign up

Export Citation Format

Share Document