Synergistically improved methane production from anaerobic wastewater treatment by iron/polyaniline composite

Author(s):  
Qian Hu ◽  
Jie Zhou ◽  
Bin Qiu ◽  
Qiang Wang ◽  
Gang Song ◽  
...  
BIOMATH ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 1907127 ◽  
Author(s):  
Neli Dimitrova ◽  
Mikhail Krastanov

In this paper we consider a four-dimensional bioreactor model, describing an anaerobic wastewater treatment with methane production. Different control strategies for stabilizing the dynamics are presented and discussed. A general and practice-oriented bounded open-loop control is proposed, aimed to steer the model solutions towards an a priori given set in thephase plane.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 317-324 ◽  
Author(s):  
Gong-Ming Zhou ◽  
Herbert H. P. Fang

This study was conducted to investigate the methanogenic and sulfidogenic activities of biomass in a UASB reactor treating wastewater containing benzoate (680 mg l−1) and sulfate (increased from 1080 to 2680 mg l−1) at 37°C and 12 hours of hydraulic retention. Results showed that after 120 days of acclimation, sludge consistently removed 99.5% of benzoate regardless of increased sulfate concentrations. Sulfidogenesis gradually out-competed methanogenesis during the acclimation phase, as indicated by the increase of sulfate-reducing efficiency (up to 99%) accompanied by the decrease of methane production. Overall sulfate removal efficiency was limited after the reactor had reached its maximum sulfate reduction rate of 2.1 g S (l d−1). Further increasing sulfate concentration from 1080 mg l−1 to 2680 mg l−1 lowered the sulfate-reducing efficiency from 85% to 39%. Flow of available electrons toward sulfidogenesis increased with the decrease of benzoate concentration, and was only slightly affected by the sulfate concentration or the benzoate/SO42−-S ratio.


2021 ◽  
Vol 581 ◽  
pp. 314-322 ◽  
Author(s):  
Na Zhou ◽  
Tong Wang ◽  
Suhao Chen ◽  
Qian Hu ◽  
Xiang Cheng ◽  
...  

2017 ◽  
Vol 115 (1) ◽  
pp. E92-E101 ◽  
Author(s):  
Israel A. Figueroa ◽  
Tyler P. Barnum ◽  
Pranav Y. Somasekhar ◽  
Charlotte I. Carlström ◽  
Anna L. Engelbrektson ◽  
...  

Dissimilatory phosphite oxidation (DPO), a microbial metabolism by which phosphite (HPO32−) is oxidized to phosphate (PO43−), is the most energetically favorable chemotrophic electron-donating process known. Only one DPO organism has been described to date, and little is known about the environmental relevance of this metabolism. In this study, we used 16S rRNA gene community analysis and genome-resolved metagenomics to characterize anaerobic wastewater treatment sludge enrichments performing DPO coupled to CO2reduction. We identified an uncultivated DPO bacterium,CandidatusPhosphitivorax (Ca.P.) anaerolimi strain Phox-21, that belongs to candidate order GW-28 within theDeltaproteobacteria, which has no known cultured isolates. Genes for phosphite oxidation and for CO2reduction to formate were found in the genome ofCa.P. anaerolimi, but it appears to lack any of the known natural carbon fixation pathways. These observations led us to propose a metabolic model for autotrophic growth byCa.P. anaerolimi whereby DPO drives CO2reduction to formate, which is then assimilated into biomass via the reductive glycine pathway.


Sign in / Sign up

Export Citation Format

Share Document