A syntrophic propionate-oxidizing microflora and its bioaugmentation on anaerobic wastewater treatment for enhancing methane production and COD removal

Author(s):  
Chong Liu ◽  
Jianzheng Li ◽  
Shuo Wang ◽  
Loring Nies
Archaea ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Shuo Wang ◽  
Jianzheng Li ◽  
Guochen Zheng ◽  
Guocheng Du ◽  
Ji Li

Hydrogen-producing acetogens (HPA) have a transitional role in anaerobic wastewater treatment. Thus, bioaugmentation with HPA cultures can enhance the chemical oxygen demand (COD) removal efficiency and CH4yield of anaerobic wastewater treatment. Cultures with high degradation capacities for propionic acid and butyric acid were obtained through continuous subculture in enrichment medium and were designated as Z08 and Z12. Bioaugmentation with Z08 and Z12 increased CH4production by glucose removal to 1.58. Bioaugmentation with Z08 and Z12 increased the COD removal rate in molasses wastewater from 71.60% to 85.84%. The specific H2and CH4yields from COD removal increased by factors of 1.54 and 1.63, respectively. Results show that bioaugmentation with HPA-dominated cultures can improve CH4production from COD removal. Furthermore, hydrogen-producing acetogenesis was identified as the rate-limiting step in anaerobic wastewater treatment.


BIOMATH ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 1907127 ◽  
Author(s):  
Neli Dimitrova ◽  
Mikhail Krastanov

In this paper we consider a four-dimensional bioreactor model, describing an anaerobic wastewater treatment with methane production. Different control strategies for stabilizing the dynamics are presented and discussed. A general and practice-oriented bounded open-loop control is proposed, aimed to steer the model solutions towards an a priori given set in thephase plane.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 317-324 ◽  
Author(s):  
Gong-Ming Zhou ◽  
Herbert H. P. Fang

This study was conducted to investigate the methanogenic and sulfidogenic activities of biomass in a UASB reactor treating wastewater containing benzoate (680 mg l−1) and sulfate (increased from 1080 to 2680 mg l−1) at 37°C and 12 hours of hydraulic retention. Results showed that after 120 days of acclimation, sludge consistently removed 99.5% of benzoate regardless of increased sulfate concentrations. Sulfidogenesis gradually out-competed methanogenesis during the acclimation phase, as indicated by the increase of sulfate-reducing efficiency (up to 99%) accompanied by the decrease of methane production. Overall sulfate removal efficiency was limited after the reactor had reached its maximum sulfate reduction rate of 2.1 g S (l d−1). Further increasing sulfate concentration from 1080 mg l−1 to 2680 mg l−1 lowered the sulfate-reducing efficiency from 85% to 39%. Flow of available electrons toward sulfidogenesis increased with the decrease of benzoate concentration, and was only slightly affected by the sulfate concentration or the benzoate/SO42−-S ratio.


2021 ◽  
Vol 581 ◽  
pp. 314-322 ◽  
Author(s):  
Na Zhou ◽  
Tong Wang ◽  
Suhao Chen ◽  
Qian Hu ◽  
Xiang Cheng ◽  
...  

1990 ◽  
Vol 22 (7-8) ◽  
pp. 153-160 ◽  
Author(s):  
Pradeep Kumar ◽  
R. J. Garde

With increasing stress on existing wastewater treatment systems, it is necessary either to upgrade the treatment unit(s) or install an entirely new treatment plant. Obviously, the upgrading is preferred over the alternative of having a new system. Keeping this in view, in the present project, an attempt has been made to explore the possibility of upgrading existing facultative ponds using water hyacinth. Bench-scale batch studies were designed to compare the performance of hyacinth treatment system with facultative ponds. Investigations were carried out with synthetic wastewater having COD in the range of 32.5-1090 mg/l. The efficiency of COD removal in water hyacinth ponds was 15-20 percent more than the facultative ponds. Based on the results, an empirical model has been proposed for COD removal kinetics. In the second phase of the project a hyacinth pond was continuously operated. BOD, COD, TS, TN, TP, pH, and DO were regularly monitored. However, the DO of the effluent from hyacinth treatment system was considerably reduced. Effluent should be aerated before it is discharged. The results indicate that the existing facultative ponds can be stalked with water hyacinth to improve their performance as well as hyacinth treatment systems can be installed to support the conventional treatment.


Sign in / Sign up

Export Citation Format

Share Document