conductive polyaniline
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 66)

H-INDEX

44
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Hemalatha Parangusan ◽  
Jolly Bhadra ◽  
Razen Al-Qudah ◽  
Hibballa Elgurashi ◽  
Marwa Abdelhakem ◽  
...  

Polyaniline (PANI)/MoS2 composites with porous microspheres were prepared by a hydrothermal and in situ polymerization method. The structural, optical, and morphological properties were characterized by X-ray powder diffraction, FTIR, scanning electron microscope, transmission electron microscope. The XRD results confirmed that the PANI/MoS2 composite was formed. Morphological characterization reveals that the successful formation of few to multilayered MoS2 nanosheet intercalated with the PANI nanoparticles.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012055
Author(s):  
M F Banjar ◽  
H D Suphi ◽  
M I Sarizan ◽  
A N A Yahaya ◽  
N A Khalil ◽  
...  

Abstract A smart material possessed enhanced conductivity integrated in prevulcanized latex (PVL) film produced throughout this work. Also recognizing the synthesis route of PANI was vast and vary, choosing suitable method was great importance corresponding to the aim of study. PANI was prepared through chemical oxidative polymerization of aniline carried out in aqueous solution which aniline dissolved in strong acidic solution (1 M HCl) with the presence of Ammonium Persulphate (APS) as the oxidizing agent and Sodium Dodecyl Sulphate (SDS) as surfactant. However, PANI was readily in acidic condition while PVL in basic and consequently causes a state of immiscibility upon mixing. Hence, PANI formed then mixed with 0.1 – 0.5 % KOH via homogenizer to increase the pH and maintain the homogeneity as well as dispersion to be combined with PVL. Various studies on PANI synthesis and incorporation with latex had been reported but very limited in focusing the colloidal and dispersion stability of the mixture. Zeta potential measurements revealed an effective dispersion and the colloidal stability as the pH of PANI increases. Analysis of mechanical performance using Universal testing Machine revealed that addition of PANI improves greatly in novel film tensile strength and Young’s Modulus by 109 % and 230 %, respectively.


2021 ◽  
Author(s):  
SIWAT MANOMAISANTIPHAP ◽  
TOMOHIRO YOKOZEK YOKOZEKI

With the development of composite technologies, aircraft become lighter and more fuel efficiency. The composite aircraft, however, become susceptible to lightning strike. Developing lightning strike protection (LSP) system need to couple with composite technologies. The authors present a concept of LSP using layer-wise hybrid laminates (CF/Hybrid) in this study. The aim of the study is to validate the effectiveness of layer-wise hybrid laminates structure for lightning strike application by using conventional epoxy-resin CFRP for main structure and electrically conductive layer as a cover layer. The composite laminates include two different types of resin in each layer: conductive polyaniline-based matrix (CF/PANI) and conventional epoxy resin (CF/epoxy). CF/PANI layers varied from 1, 2, and 4 layers with corresponding 7, 6, and 4 layers of CF/epoxy to find out the least effective number of CF/PANI that can prevent lightning strike damage. The specimens were characterized for their mechanical properties and underwent simulated lightning strike test to realize their effectiveness. The result of simulated lightning strike has shown that a layer of conductive CF/PANI can help to avoid catastrophic damage on CF/epoxy. With a greater number of CF/PANI, the less detectable damage in CF/PANI layer became. In the case of CF/Hybrid with 4 layers of CF/PANI shows 70% residual bending strength after the lightning strike. With the aid of nondestructive inspection tools, i.e., thermography and ultrasonic test, the mechanism of damage on the composite panels were observed and analyzed. From this study, CF/Hybrid with 4 layers shows the optimal properties for lightning strike protection.


High Voltage ◽  
2021 ◽  
Author(s):  
Enmin Wang ◽  
Sheng Zhang ◽  
Ciyao Wang ◽  
Shumei Chen ◽  
Chuncheng Hao ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4837
Author(s):  
Izabella Rajzer ◽  
Monika Rom ◽  
Elżbieta Menaszek ◽  
Janusz Fabia ◽  
Ryszard Kwiatkowski

Currently, the challenge for bone tissue engineering is to design a scaffold that would mimic the structure and biological functions of the extracellular matrix and would be able to direct the appropriate response of cells through electrochemical signals, thus stimulate faster bone formation. The purpose of the presented research was to perform and evaluate PCL/n-HAp scaffolds locally modified with a conductive polymer-polyaniline. The material was obtained using electrospinning, and a simple ink-jet printing method was applied to receive the conductive polyaniline patterns on the surface of the electrospun materials. The samples of scaffolds were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal analysis (DSC, TGA), and infrared spectroscopy (FTIR) before and after immersion of the material in Simulated Body Fluid. The effect of PANI patterns on changes in the SBF mineralization process and cell morphology was evaluated in order to prove that the presented material enables the growth and proliferation of bone cells.


Sign in / Sign up

Export Citation Format

Share Document