First report of cucurbit chlorotic yellows virus infecting melon, watermelon and wild melon in the Philippines

Author(s):  
Hsin-Yi Chang ◽  
Li-Cheng Chen ◽  
Chung-Cheng Lin ◽  
Wen-Shi Tsai
Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 778-778 ◽  
Author(s):  
W. M. Wintermantel ◽  
L. L. Jenkins Hladky ◽  
P. Fashing ◽  
K. Ando ◽  
J. D. McCreight

2021 ◽  
Vol 73 (1) ◽  
pp. 79-90
Author(s):  
Edzel Evallo ◽  
John Darby Taguiam ◽  
Jennelyn Bengoa ◽  
Rodel Maghirang ◽  
Mark Angelo Balendres

2014 ◽  
Vol 9 (1) ◽  
Author(s):  
B. D. Acabal ◽  
J. Z. Groenewald ◽  
P. W. Crous ◽  
C. J. R. Cumagun
Keyword(s):  

Plant Disease ◽  
2003 ◽  
Vol 87 (7) ◽  
pp. 875-875 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
D. Bertetti ◽  
R. Nicoletti ◽  
M. L. Gullino

Lantana camara is increasingly grown in northern Italy as a potted plant and contributes to the diversification of offerings in the ornamental market. During the spring of 2001, selections of L. camara cuttings growing at a commercial farm located at Albenga (Riviera coast) exhibited tan leaf spots of irregular size and shape. Spots were at first isolated, 4 to 8 mm in diameter, and later coalesced and affected the entire plant. Heavily infected leaves, stems, and branches became blighted and were killed. Infected rooted cuttings also eventually died. Diseased cuttings showed a progressive reduction (to less than 20%) in rooting ability. Isolations from infected leaves and stems on potato dextrose agar (PDA), supplemented with 100 mg/liter of streptomycin sulphate, consistently yielded a fungus with mycelial and cultural characteristics resembling Rhizoctonia solani. The fungal isolates were further characterized as R. solani Kühn AG-4 based on hyphal anastomoses with several AG-4 tester isolates. Pathogenicity tests were performed by placing 5-day-old-fungal mycelial plugs, grown on PDA, at the base of five healthy yellow-sage stems and holding plants in a dew chamber at 18 to 22°C. After 2 days, foliage blight appeared on leaves of inoculated plants, and after 3 days, stems also became infected and entire plants wilted. Five noninoculated plants remained healthy. The fungal pathogen was reisolated from all inoculated plants. R. solani has been observed on L. camara in the United States (1) and the Philippines (2). To our knowledge, this is the first report of R. solani on L. camara in Europe. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) F. T. Orillo and R. B. Valdez. Philipp. Agric. A. 42:292, 1958.


2017 ◽  
Vol 36 ◽  
pp. 8
Author(s):  
R.H. Reeder ◽  
S. Edgington ◽  
N.S. Baucas ◽  
R.C. Joshi ◽  
M.A.G. Bas-ilan ◽  
...  

Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 72-72 ◽  
Author(s):  
I. Wonni ◽  
L. Ouedraogo ◽  
V. Verdier

Bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola is prevalent in Asia where it can decrease yield by as much as 30%. In Africa, BLS has been reported in Madagascar, Nigeria, Senegal, and recently in Mali (1). The pathogen is seed transmitted and rice seeds can be a source of primary inoculum (3). In October 2009, leaf streak symptoms were observed on 3-month-old field rice grown in three regions of Burkina Faso (Haut-Bassin, Cascades, and East Center). Disease was found on cultivated Oryza sativa (varieties TS2, FKR19, and FKR56N), wild rice species (O. longistaminata and O. barthii), and weeds. Symptoms consisted of water-soaked lesions that developed into translucent, yellow streaks with visible exudates at the leaf surface. Yellow-pigmented Xanthomonas-like colonies were isolated on PSA semiselective medium (peptone 10 g, sucrose 10 g, bacto agar 16 g, distilled water 1,000 ml, actidione 50 mg liter–1, cephalexin 40 mg liter–1, and kasugamycin 20 mg liter–1). A multiplex PCR developed for the identification of Xanthomonas oryzae pathovars (2) was used to check the identity of Xanthomonas-like isolates. X. oryzae pv. oryzicola strains BLS256 from the Philippines and CFBP 7331 from Mali were used as positive controls. Three expected DNA fragments (331, 691, and 945 bp) corresponding to X. oryzae pv. oryzicola were obtained from all isolates using the multiplex PCR. No fragment was observed for negative controls (distilled water as the template). Five X. oryzae pv. oryzicola isolates were further analyzed by sequence analysis using portions of the gyrB housekeeping gene together with reference strains. Two sequence types were identified among Burkinabe isolates differing by only one nucleotide. When compared with the nucleotide database with BLAST, three isolates (BAI6, BAI15, and BAI19) were 100% identical to the type culture strain X. oryzae pv. oryzicola BLS256 (gyrB sequence was obtained from GenBank AAQN01000001.1) while the other two (BAI5 and BAI20) demonstrated 99% sequence similarity. The nucleotide sequence of isolate BAI5 was submitted to GenBank (HQ112342). Pathogenicity tests were performed on greenhouse-grown 3-week-old rice plants cv. Nipponbare. Cultures were grown overnight in PSA medium and adjusted in sterile water to 1 × 108 CFU/ml and inoculated into rice leaves with the blunt end of a 1-ml syringe. Four infiltrations were done per isolate per leaf and two leaves were inoculated per plant. Control plants were inoculated with sterile water. After 15 days of incubation in the greenhouse at 27 ± 1°C with a 12-h photoperiod, inoculated leaves exhibited water-soaked lesions with yellow exudates that were identical to symptoms seen in the field. Control plants remained symptomless. Colonies with morphology typical of Xanthomonas were recovered from the symptomatic leaves and typed using multiplex PCR to fulfill Koch's postulates. Three isolates have been deposited in the Collection Française de Bactéries Phytopathogènes (CFBP) and identified as X. oryzae pv. oryzicola strains CFBP7341–43. To our knowledge, this is the first report of X. oryzae pv. oryzicola in Burkina Faso. Further surveys and strain collection will be necessary to evaluate the geographic distribution and prevalence of BLS in Burkina Faso and neighboring countries. References: (1) C. Gonzalez et al. Mol. Plant-Microbe Interact. 20:534, 2007. (2) J. Lang et al. Plant Dis. 94:311, 2010. (3) G. Xie and T. Mew. Plant Dis. 82:1007, 1998.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 354-354 ◽  
Author(s):  
R. Zeng ◽  
F. M. Dai ◽  
W. J. Chen ◽  
J. P. Lu

In October 2007, symptoms of chlorosis on the upper leaves and a bright yellow color on the lower leaves were observed sporadically on hami melon (Cucumis melo cv. Xuelihong) in a high tunnel in Nanhui of Shanghai, China. Disease progresses from initial mottling of leaves into leaves that are completely yellow with the veins remaining green. The oldest leaves develop symptoms first, so these leaves have a pronounced even yellow color. In October 2009, these symptoms were found in all melons produced in the suburbs of Shanghai. These symptoms were similar to those caused by Cucurbit yellow stunting disorder virus (CYSDV) and Cucurbit chlorotic yellows virus (CCYV) (1–3). Twelve samples from symptomatic melons were collected in the Jiading, Nanhui, Fengxian, and Chongming districts of Shanghai for virus diagnosis. Large populations of whiteflies were observed in association with the diseased cucurbit crops. Total RNA was extracted with Trizol reagents (Invitrogen, Carlsbad, CA). We used random primers (9-mer) for reverse transcription-PCR. Extracts were for CYSDV using specific primers CYSDV-CP-F (5′-ATGGCGAGTTCGAGTGAGAA-3′) and CYSDV-CP-R (5′-TCAATTACCACAGCCACCTG-3′) to amplify a 756-bp fragment of coat protein gene and CCYV using specific primers CCYV-HSP-F1 (5′-TGCGTATGTCAATGGTGTTATG-3′) and CCYV-HSP-R1 (5′-ATCCTTCGCAGTGAAAAACC-3′) to amplify a 462-bp fragment of the HSP gene (1). CYSDV was not found in all samples. The expected 462-bp target fragment of CCYV was obtained in all samples but not from any of the healthy controls. All the 462-bp PCR products were cloned to pGEM-T vector (Promega, Madison, WI) and sequenced. All sequences obtained were homologous. A comparison of the submitted sequence (GenBank Accession No. HQ148667) with those in GenBank showed that the sequence had 100% nucleotide identity to the Hsp70h sequences of (CCYV) isolates from Japan (Accession Nos. AB523789 and AB457591) (1,4), Taiwan (Accession No. HM120250) (2), and mainland of China (Accession Nos. GU721105, GU721108, and GU721110). CCYV is a new member of the genus Crinivirus, first discovered in Japan in 2004 (4) and reported in Taiwan in 2009 (2). To our knowledge, this is the first report of CCYV on melon in China. References: (1) Y. Gyoutoku et al. Jpn. J. Phytopathol. 75:109, 2009. (2) L.-H. Huang et al. Plant Dis. 94:1168, 2010. (3) L. Z. Liu et al. Plant Dis.94:485, 2010. (4) M. Okuda et al. Phytopathology 100:560, 2010.


Sign in / Sign up

Export Citation Format

Share Document