scholarly journals Effect of cooling rate and composition on microstructure and mechanical properties of ultrahigh-strength steels

2019 ◽  
Vol 26 (12) ◽  
pp. 1350-1365 ◽  
Author(s):  
Mohammed Ali ◽  
David Porter ◽  
Jukka Kömi ◽  
Mamdouh Eissa ◽  
Hoda El Faramawy ◽  
...  
Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 262
Author(s):  
Mohammed Ali ◽  
David Porter ◽  
Jukka Kömi ◽  
Mamdouh Eissa ◽  
Hoda El Faramawy ◽  
...  

The effect of electroslag remelting (ESR) with CaF2-based synthetic slag on the microstructure and mechanical properties of three as-quenched martensitic/martensitic-bainitic ultrahigh-strength steels with tensile strengths in the range of 1250–2000 MPa was investigated. Ingots were produced both without ESR, using induction furnace melting and casting, and with subsequent ESR. The cast ingots were forged at temperatures between 1100 and 950 °C and air cooled. Final microstructures were investigated using laser scanning confocal microscopy, field emission scanning electron microscopy, electron backscatter diffraction, electron probe microanalysis, X-ray diffraction, color etching, and micro-hardness measurements. Mechanical properties were investigated through measurement of hardness, tensile properties and Charpy-V impact toughness. The microstructures of the investigated steels were mainly auto-tempered martensite in addition to small fractions of retained austenite and bainite. Due to the consequences of subtle modifications in chemical composition, ESR had a considerable impact on the final microstructural features: Prior austenite grain, effective martensite grain, and lath sizes were refined by up to 52%, 38%, and 28%, respectively. Moreover, the 95th percentiles in the cumulative size distribution of the precipitates decreased by up to 18%. However, ESR had little, if any, the effect on microsegregation. The variable effects of ESR on mechanical properties and how they depend on the initial steel composition are discussed.


2012 ◽  
Vol 52 (12) ◽  
pp. 2210-2219 ◽  
Author(s):  
Qiang Liu ◽  
Hongwei Zhang ◽  
Qiang Wang ◽  
Xiangkui Zhou ◽  
P^|^auml;r G. J^|^ouml;nsson ◽  
...  

2012 ◽  
Vol 182-183 ◽  
pp. 162-166
Author(s):  
Can Can Li ◽  
Hao Ran Geng ◽  
Zhen Yuan Li ◽  
Hai Ou Qin

In this paper, Al-12.6%Si/Al63Cu25Fe12 composites were fabricated by method of casting. The microstructure and chemical composition of Al63Cu25Fe12 quasicrystal alloy and Al-12.6%Si alloy reinforced by the quasicrystal were studied, and the mechanical properties of Al-12.6%Si composite were also measured. The results show that almost single quasicrystalline phases exist in the samples which are cast with the 1300°C melt. Quickly enough cooling rate and appropriate melt temperature are necessary for the formation of the quasicrystalline phase. In addition, Al-12.6%Si composite has optimal mechanical properties when the amount of Al63Cu25Fe12 quasicrystal is 3 wt%.


Sign in / Sign up

Export Citation Format

Share Document