Effect of cooling rate on microstructure, hardness, and residual stress of 0.28C–0.22Ti wear-resistant steel

2019 ◽  
Vol 26 (8) ◽  
pp. 866-874
Author(s):  
Chen Dong ◽  
Hui-bin Wu ◽  
Xi-tao Wang
2021 ◽  
Vol 12 (1) ◽  
pp. 5-9
Author(s):  
N. N. Sergeev ◽  
A. N. Sergeev ◽  
S. N. Kutepov ◽  
A. E. Gvozdev ◽  
A. G. Kolmakov ◽  
...  

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ruichao Guo ◽  
Jianjun Wu ◽  
Yinxiang Ren

Purpose Accurate prediction of residual stress requires precise knowledge of the constitutive behavior of as-quenched material. This study aims to model the flow stress behavior for as-quenched Al-Mg-Si alloy. Design Methodology Approach In the present work, the flow behavior of as-quenched Al-Mg-Si alloy is studied by the hot compression tests at various temperatures (573–723 K), strain rates (0.1–1 s−1) and cooling rates (1–10 K/s). Flow stress behavior is then experimentally observed, and an Arrhenius model is used to predict the flow behavior. However, due to the fact that materials parameters and activation energy do not remain constant, the Arrhenius model has an unsatisfied prediction for the flow behavior. Considering the effects of temperatures, strain rates and cooling rates on constitutive behavior, a revised Arrhenius model is developed to describe the flow stress behavior. Findings The experimental results show that the flow stress increases by the increasing cooling rate, increasing strain state and decreasing temperature. In comparison to the experimental data, the revised Arrhenius model has an excellent prediction for as-quenched Al-Mg-Si alloy. Originality Value With the revised Arrhenius model, the flow behaviors at different quenching conditions can be obtained, which is an essential step to the residual stress prediction when the model is implemented in a finite element code, e.g. ABAQUS, in the future.


Author(s):  
Erding Wen ◽  
Renbo Song ◽  
Wenming Xiong ◽  
Xin Zhang ◽  
Zhonghong Wang ◽  
...  

2013 ◽  
Vol 20 (8) ◽  
pp. 72-77 ◽  
Author(s):  
Hong-yu Song ◽  
Can-ming Li ◽  
Liang-yun Lan ◽  
De-wen Zhao ◽  
Guo-dong Wang

Sign in / Sign up

Export Citation Format

Share Document