scholarly journals The influence of spiral angle on lift-off speed of face gas seal under start-up

2019 ◽  
Vol 1 (9) ◽  
Author(s):  
Junjie Lu ◽  
Xuexing Ding ◽  
Wei Zhang
Keyword(s):  
Start Up ◽  
Lift Off ◽  
Author(s):  
Laurent Rudloff ◽  
Mihai Arghir ◽  
Olivier Bonneau ◽  
Pierre Matta

The paper presents the results of the experimental analysis of static and dynamic characteristics of a generation 1 foil bearing of 38.1 mm diameter and L/D = 1. The test rig is of floating bearing type, the rigid shaft being mounted on ceramic ball bearings and driven up to 40 krpm. Two different casings are used for start-up and for measurement of dynamic coefficients. In its first configuration, the test rig is designed to measure the start-up torque. The foil bearing casing is made of two rings separated by a needle bearing for enabling an almost torque free rotation between the foil bearing and the static load. The basic results are the start up torque and the lift off speed. In its second configuration a different casing is used for measuring the impedances of the foil bearing. Misalignment is a problem that is minimized by using three flexible stingers connecting the foil bearing casing to the base plate of the test rig. The test rig enables the application of a static load and of the dynamic excitation on the journal bearing casing, and can measure displacements, forces and accelerations. Working conditions consisted of static loads comprised between 10 N and 50 N and rotation frequencies ranging from 260 Hz to 590 HZ. Excitation frequencies comprised between 100 Hz are 600 Hz are applied by two orthogonally mounted shakers for each working condition. Stiffness and damping coefficients are identified from the complex impedances and enable the calculation of natural frequencies. The experimental results show that the dynamic characteristics of the tested bearing have a weak dependence on the rotation speed but vary with the excitation frequency.


Author(s):  
Luis San Andrés ◽  
Thomas Abraham Chirathadam

Gas bearings in oil-free microturbomachinery for gas process applications and power generation (<400 kW) must be reliable and inexpensive, ensuring low drag power and thermal stability. Bump-type foil bearings (BFBs) and overleaf-type foil bearings are in use in specialized applications, though their development time (design and prototyping), exotic materials, and excessive manufacturing cost still prevent their widespread usage. Metal mesh foil bearings (MMFBs), on the other hand, are an inexpensive alternative that use common materials and no restrictions on intellectual property. Laboratory testing shows that prototype MMFBs perform similarly as typical BFBs, but offer significantly larger damping to dissipate mechanical energy due to rotor vibrations. This paper details a one-to-one comparison of the static and dynamic forced performance characteristics of a MMFB against a BFB of similar size and showcases the advantages and disadvantages of MMFBs. The bearings for comparison are a generation I BFB and a MMFB, both with a slenderness ratio L/D = 1.04. Measurements of rotor lift-off speed and drag friction at start-up and airborne conditions were conducted for rotor speeds to 70 krpm and under identical specific loads (W/LD = 0.06 to 0.26 bar). Static load versus bearing elastic deflection tests evidence a typical hardening nonlinearity with mechanical hysteresis, the MMFB showing two to three times more material damping than the BFB. The MMFB exhibits larger drag torques during rotor start-up, and shut-down tests though bearing lift-off happens at lower rotor speeds (∼15 krpm). As the rotor becomes airborne, both bearings offer very low drag friction coefficients, ∼0.03 for the MMFB and ∼0.04 for the BFB in the speed range 20–40 krpm. With the bearings floating on a journal spinning at 50 krpm, the MMFB dynamic direct force coefficients show little frequency dependency, while the BFB stiffness and damping increases with frequency (200–400 Hz). The BFB has a much larger stiffness and viscous damping coefficients than the MMFB. However, the MMFB material loss factor is at least twice as large as that in the BFB. The experiments show that the MMFB, when compared to the BFB, has a lower drag power and earlier lift-off speed and with dynamic force coefficients having a lesser dependency on whirl frequency excitation.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Franck Balducchi ◽  
Mihaï Arghir ◽  
Romain Gauthier ◽  
Emelyne Renard

The paper deals with the experimental analysis of the torque and of the lift-off velocity of a foil thrust bearing. The geometric characteristics of the foil thrust bearing follow the design recently proposed by Dykas et al. (2009, “Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications,” ASME J. Eng. Gas Turbines Power, 131(1), p. 012301-1). A dedicated test rig was developed and enables the measurement of the speed, the torque, and temperatures under the foils. The measurements underlined the importance of managing heat transfer in a foil thrust bearing. Results are presented for mild static loads ranging from 5 to 60 N and rotation speeds comprised between 20 and 35 krpm. The value of the start-up torque was validated by comparisons with results obtained with a rapid camera.


Author(s):  
Luis San Andrés ◽  
Thomas Abraham Chirathadam

Gas bearings in oil-free microturbomachinery for gas process applications and power generation (< 400 kW) must be reliable and inexpensive, ensuring low drag power and thermal stability. Bump-type foil bearings (B-FBs) and overleaf-type foil bearings are in use in specialized applications, though their development-time (design and prototyping), exotic materials, and excessive manufacturing cost still prevent their widespread usage. Metal mesh foil bearings (MMFBs), on the other hand, are an inexpensive alternative that uses common materials and no restrictions on intellectual property. Laboratory testing shows that prototype MMFBs perform similarly as typical BFBs but offering significantly larger damping to dissipate mechanical energy due to rotor vibrations. This paper details a one-to-one comparison of the static and dynamic forced performance characteristics of a MMFB against a BFB of similar size and showcases the advantages and disadvantages of MMFBs. The bearings for comparison are a Generation I BFB and a MMFB, both with a slenderness ratio L/D = 1.04. Measurements of rotor lift-off speed and drag friction at start-up and airborne conditions were conducted for rotor speeds to 70 krpm and under identical specific loads (W/LD = 0.06 to 0.26 bar). Static load versus bearing elastic deflection tests evidence a typical hardening nonlinearity with mechanical hysteresis; the MMFB showing two to three times more material damping than the BFB. The MMFB exhibits larger drag torques during rotor start-up and shut-down tests though bearing lift-off happens at lower rotor speeds (∼15 krpm). As the rotor becomes airborne, both bearings offer very low drag friction coefficients, ∼0.03 for the MMFB and ∼0.04 for the BFB in the speed range 20–40 krpm. With the bearings floating on a journal spinning at 50 krpm, the MMFB dynamic direct force coefficients show little frequency dependency, while the BFB stiffness and damping increases with frequency (200–400 Hz). The BFB has a much larger stiffness and viscous damping coefficients than the MMFB. However, the MMFB material loss factor is at least twice as large as that in the BFB. The experiments show the MMFB, when compared to the BFB, has a lower drag power and earlier lift-off speed, and with dynamic force coefficients having a lesser dependency on whirl frequency excitation.


Nature ◽  
2006 ◽  
Author(s):  
Geoff Brumfiel
Keyword(s):  

Nature ◽  
2006 ◽  
Author(s):  
Killugudi Jayaraman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document