SN Applied Sciences
Latest Publications


TOTAL DOCUMENTS

4813
(FIVE YEARS 4674)

H-INDEX

16
(FIVE YEARS 15)

Published By Springer-Verlag

2523-3971, 2523-3963

2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Imade Yolanda Nsa ◽  
Busayo Tosin Akinyemi ◽  
Maryam Bello-Akinosho ◽  
Simon Nnamdi Ezechukwu ◽  
Tomisin Bridget Bayode ◽  
...  

AbstractThe rhizospheres of the weeds Ageratum conyzoides, Axonopus compressus, Emilia coccinea, Synedrella nodiflora, Urena lobata and Sida acuta from a sub-bituminous coal mining site and a control site, without coal discards, were screened for new fungi with ability to degrade sub-bituminous coal in the laboratory. The isolates were identified by cultural and molecular methods. Seventeen out of the sixty-one fungal isolates tested could utilize sub-bituminous coal as an energy source. Upon further evaluation, only seven of these were promising candidates for coal biodegradation, and they were assayed for their biosolubilization and depolymerization activities to determine their mechanisms of coal biodegradation. Based on the accumulation of humic acid (HA), which is the marker for biosolubilization, Mucor circinelloides and Aspergillus tubingensis were the most active. On the other hand, Cunninghamella bertholletiae, Simplicillium subtropicum, Penicillium daleae and Trichoderma koningiopsis were the highest producers of fulvic acid (FA), the indicator of depolymerization. Purpureocillium lilacinum produced the lowest yields of both HA and FA compared to the other six coal-degrading candidates. The presence of laccase in Trichoderma koningiopsis, Penicillium daleae and Simplicillium subtropicum suggests a role for this enzyme in the enhancement of the coal biodegradation process. However, the inability to amplify the laccase gene in Cunninghamella bertholletiae indicates that another enzyme probably aids its coal bioconversion. The current investigation highlights the potentials of these strains in harnessing biotechnological processes of sub-bituminous coal conversion into value-added products, which could be extended to the bioremediation of coal-polluted soils. The fungi with the highest coal bioconversion capabilities belonged to Ascomycota and Zygomycota and were found in the rhizospheres of the weeds Emilia coccinea, Ageratum conyzoides and Axonopus compressus.


2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Bilal kazmi ◽  
Syed Ali Ammar Taqvi ◽  
Muhammad Naqvi ◽  
Suhaib Umer Ilyas ◽  
Ali Moshin ◽  
...  

2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Katie Katie Williams ◽  
Samantha Ramirez ◽  
Christopher R. Lesser

AbstractAedes aegypti, the Dengue and Zika vector, is a domestic mosquito that is difficult to control. The challenge lies in the mosquito’s preference to lay its eggs in cryptic habitats such as fence post openings, buckets and bird baths, cups. Additionally, current methods of control are labor-intensive. We employed the WALS strategy to evaluate the operational efficacy of applying VectoBac WDG using a truck-mounted mister to control local populations of Ae. aegypti in urban settings with difficult-to-reach larval mosquito habitats. Our study was conducted in Cortez (Manatee County), Florida, USA (27° 27’ N, 82° 40’ W). We selected two study sites, one untreated control (21.9 ha) and one treatment site (23.1 ha) where historical data have shown high populations of Ae. aegypti based on weekly ovitrap surveillance. Weekly BGs and ovitraps (10–15 traps/site) were deployed to monitor adult population dynamics. A total of 50 bioassay jars were placed in the field each afternoon of the Bti application (8 application events) at fixed locations to collect droplets and gauge efficacy. We found significant reduction in female adults (P = 0.0002) and landing rate counts (P = 0.0058) as a result of treatment. Larval bioassays during the eight applications confirmed Bti deposit in a variety of coverage types regardless of placement in the yards. WALS applications with a truck-mounted mister can be effective at reducing disease carrying mosquito populations in residential areas and can be implemented in an integrated vector management program.


2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Hankhray Boro ◽  
Talambedu Usha ◽  
Dinesh Babu ◽  
Prakashmurthy Chandana ◽  
Arvind Kumar Goyal ◽  
...  

AbstractThe roots of Morus species are well described in the Pharmacopoeia of the People's Republic of China (ChP) for its traditional use in treating liver fibrosis due to its hepatoprotective property. However, little is known about the hepatoprotective effect of the roots of Morus indica L. (RoMi), and the pharmacological mechanism(s) are uncertain due to its intricacy. Therefore, this study evaluates the hepatoprotective activity of the ethanolic extract of RoMi (eRoMi) against the CCl4-induced in-vivo animal model at different dosages (100 and 200 mg/kg BW) in comparison with silymarin as a positive control. The hepatoprotective activity of eRoMi was evaluated by measuring the levels of serum biomarkers, hepatic antioxidant enzymes and was verified by histological studies. Interestingly, 1,2-bis(trimethylsilyl) benzene, 1,4-phenylenebis (trimethylsilane), 2,4,6-cycloheptatriene-1-one, 3,5-bis-trimethylsilyl and α-amyrin were the active components found in eRoMi as detected by GC–MS. Oral administration of eRoMi (200 mg/kg BW) to rats significantly protected serum biochemical parameters (increased ALT, AST, LDH, bilirubin and GGT as well as depletion of antioxidant enzymes and hepatic GSH) and elevation in hepatic lipid peroxidation as compared to CCl4-treated rats. The hematological indices such as erythrocytes, hemoglobin, monocytes and lymphocytes were also normal in eRoMi-treated rats. The histopathological evaluation indicated a significant restoration of liver structure as compared to silymarin. This study is the first scientific validation for the traditional use of eRoMi to understand its hepatoprotective activity.


2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Kwang-Yul Kim

AbstractThe diurnal/seasonal structure of the boundary layer height (BLH) is investigated over East Asia by using the hourly synoptic monthly ERA5 reanalysis variables from 1979 to 2019. Sensible heat flux (SHF) is the major factor in the temporal and spatial variation of the BLH. Although BLH, in general, is positively correlated with SHF throughout the year, BLH-SHF relationship varies significantly based on the surface type, latitude and time of the year. Analysis also reveals that stability is an important parameter controlling the diurnal maximum BLH. The growth of BLH is strongly limited by the presence of a stable layer. On the other hand, BLH increases abruptly in the presence of a weakly stratified residual layer. In addition, regional warming tends to increase the BLH in the mid- to high-latitude continental area. In the low-latitude continental area, the sign of anomalous SHF varies seasonally and regionally. Stability plays only a minor role in the BLH change except over the Tibetan Plateau, where the increased stability at the top of boundary layer due to warming reduces BLH rather significantly.


2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Unsub Zia ◽  
Mark McCartney ◽  
Bryan Scotney ◽  
Jorge Martinez ◽  
Ali Sajjad

AbstractPseudo-random number generators (PRNGs) are one of the building blocks of cryptographic methods and therefore, new and improved PRNGs are continuously developed. In this study, a novel method to generate pseudo-random sequences using coupled map lattices is presented. Chaotic maps only show their chaotic behaviour for a specified range of control parameters, what can restrict their application in cryptography. In this work, generalised symmetric maps with adaptive control parameter are presented. This novel idea allows the user to choose any symmetric chaotic map, while ensuring that the output is a stream of independent and random sequences. Furthermore, to increase the complexity of the generated sequences, a lattice-based structure where every local map is linked to its neighbouring node via coupling factor has been used. The dynamic behaviour and randomness of the proposed system has been studied using Kolmogorov–Sinai entropy, bifurcation diagrams and the NIST statistical suite for randomness. Experimental results show that the proposed PRNG provides a large key space, generates pseudo-random sequences and is computationally suitable for IoT devices.


2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Ainsley Rutterford ◽  
Leonardo Bertini ◽  
Erica J. Hendy ◽  
Kenneth G. Johnson ◽  
Rebecca Summerfield ◽  
...  

AbstractX-ray micro–computed tomography (µCT) is increasingly used to record the skeletal growth banding of corals. However, the wealth of data generated is time consuming to analyse for growth rates and colony age. Here we test an artificial intelligence (AI) approach to assist the expert identification of annual density boundaries in small colonies of massive Porites spanning decades. A convolutional neural network (CNN) was trained with µCT images combined with manually labelled ground truths to learn banding-related features. The CNN successfully predicted the position of density boundaries in independent images not used in training. Linear extension rates derived from CNN-based outputs and the traditional method were consistent. In the future, well-resolved 2D density boundaries from AI can be used to reconstruct density surfaces and enable studies focused on variations in rugosity and growth gradients across colony 3D space. We recommend the development of a community platform to share annotated images for AI.


2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Edward Clark ◽  
Monika Bleszynski ◽  
Matt Gordon

Abstract Abstract Options for recycling fiber composite polymer (FCP) materials are scarce, as these materials cannot be normally recycled and are toxic when improperly disposed. Additionally, reducing water usage is an increasing concern, as the concrete industry currently uses 10% of the world’s industrial water. Therefore, building upon our previous work, this research explores the use of polymer hybrid carbon and glass composite waste products as reinforcements in high-pressure compacted cement. Our material used nearly 70% less water during manufacturing and exhibited improved durability and salt corrosion resistance. Compression strength tests were performed on high-pressure compacted materials containing 6.0 wt% recycled admixtures before and after saltwater aging, and the results showed that the material retained 90% of its original compression strength after aging, as it contained fewer pores and cavities. Our experimental work was supplemented by molecular dynamics. Simulations, which indicated that the synergetic effects of compaction and FCP admixture addition slowed the diffusion of corrosive salt ions by an average of 84%. Thus, our high-pressure compacted cement material may be suitable for extended use in marine environments, while also reducing the amount of commercial fiber composite polymer waste material that is sent to the landfill. Article Highlights Fiber composite waste was successfully recycled into denser, high-pressure compacted ordinary Portland cement materials. High-pressure compacted cement samples containing 6% recycled admixtures retained 90% of their compression strength after salt aging. The high-pressure compaction method utilized 70% less water during specimen fabrication.


2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Huan Tian ◽  
Xinxing Yan ◽  
Fu Zhou ◽  
Chuan Xu ◽  
Chao Li ◽  
...  

AbstractA feasibility study was carried out on generation of hydrochloric acid and lithium hydroxide from the simulated lithium chloride solution using EX3B model bipolar membrane electrodialysis (BMED). The influence of a series of process parameters, such as feed concentration, initial acid and base concentration in device component, feed solution volume, and current density were investigated. In addition, the maximum achievable concentrations of HCl and LiOH, the average current efficiency, and specific energy consumption were also studied and compared in this paper to the existing literature. Higher LiCl concentrations in the feed solution were found to be beneficial in increasing the final concentrations of HCl and LiOH, as well as improving current efficiency while decreasing specific energy consumption. However, when its concentration was less than 4 g/L, the membrane stack voltage curve of BMED increased rapidly, attributed to the higher solution resistance. Also low initial concentration of acid and base employed in device component can improve the current efficiency. Increasing of the initial concentration of acid and base solution lowered energy consumption. Moreover, a high current density could rapidly increase HCl and LiOH concentration and enhance water movements of BMED process, but reduced the current efficiency. The maximum achievable concentration of HCl and LiOH generated from 130 g/L LiCl solution were close to 3.24 mol/L and 3.57 mol/L, respectively. In summary, the present study confirmed the feasible application for the generation of HCl and LiOH from simulated lithium chloride solution with BMED.


2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Ali Abdulsattar Hussein

Abstract This paper studies the construction of a compact one-dimension-sensing iscreased bandwidth photonic accelerometer using cascaded groups of continued sections of a 50 ng seismic mass each attached to the silicon beams of two under etched slot waveguide electrostatic phase shift elements acting as voltage-controlled adaptive-precision springs. The accelerometer sensitivity is shown to be significantly increased by applying equal electrode voltages. Simulation results indicate that the sensitivity dynamic range is about 76 dB combining both open-loop and closed-loop voltage control of the sensor. The operation bandwidth of the accelerometer may be increased up to 250 kHz due to the cascaded multi-section architecture of the sensor. This advantage gives significant relief to the limitation in bandwidth response of single section counterparts. The sensor may be designed to detect impact accelerations up to 104 ms−2 and yet can still be electrostatically driven to detect sub-gravitational accelerations. The application of negative feedback voltage control to hold the seismic mass at close distances from a standstill is shown to significantly increase the acceleration detection range. The construction uses all in-plane components based on a silicon-on-insulator template with 300 nm of silicon core thickness. The proposed electromechanical suspension system and the electric feeding arrangements are the most simple. The accelerometer performance is theoretically deterministic. The study is based on performing numerical analysis for the electromechanical suspension system. The waveguides are simulated utilizing the VPIphotonics industry standard. Applications may include the automobile and aerospace industries, underwater sonar, industrial ultrasonic detection, seismology predictions, and medical ultrasonography. Article Highlights The cascading of compact high-speed accelerometer sections allows increasing the bandwidth response of the proposed sensor by many folds compared to its single-mass single-section counterparts. The suspension structure is electrostatically controlled by two voltages enabling widely controlling the sensitivity and detection range of the accelerometer. The proposed accelerometer may fit wide applications achieving high detection speeds and super sensitivities utilizing a small footprint and power-efficient structure.


Sign in / Sign up

Export Citation Format

Share Document