scholarly journals AHWR-Net: offline handwritten amharic word recognition using convolutional recurrent neural network

2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Fetulhak Abdurahman ◽  
Eyob Sisay ◽  
Kinde Anlay Fante

AbstractAmharic ("Image missing") is the official language of the Federal Government of Ethiopia, with more than 27 million speakers. It uses an Ethiopic script, which has 238 core and 27 labialized characters. It is a low-resourced language, and a few attempts have been made so far for its handwritten text recognition. However, Amharic handwritten text recognition is challenging due to the very high similarity between characters. This paper presents a convolutional recurrent neural networks based offline handwritten Amharic word recognition system. The proposed framework comprises convolutional neural networks (CNNs) for feature extraction from input word images, recurrent neural network (RNNs) for sequence encoding, and connectionist temporal classification as a loss function. We designed a custom CNN model and compared its performance with three different state-of-the-art CNN models, including DenseNet-121, ResNet-50 and VGG-19 after modifying their architectures to fit our problem domain, for robust feature extraction from handwritten Amharic word images. We have conducted detailed experiments with different CNN and RNN architectures, input word image sizes, and applied data augmentation techniques to enhance performance of the proposed models. We have prepared a handwritten Amharic word dataset, HARD-I, which is available publicly for researchers. From the experiments on various recognition models using our dataset, a WER of 5.24 % and CER of 1.15 % were achieved using our best-performing recognition model. The proposed models achieve a competitive performance compared to existing models for offline handwritten Amharic word recognition.

2021 ◽  
Author(s):  
Rehaan Sajjad Arai ◽  
Skanda Shanubog A ◽  
Rithik Jain ◽  
Pushkar Kumar ◽  
Krupashankari Sandyal

Offline Handwritten Text Recognition (HTR) is one of the most interesting challenges in today's date in the field of Image processing. This paper introduces a novel technique to recognize the handwritten text by using Convolutional Recurrent Neural Network along with Connectionist Temporal Classification. This model makes use of the IAM dataset. Offline Signature Verification (SV) is another challenging task in the field of biometrics. This paper demonstrates a novel technique to verify the signature as an original or forged one, and makes use of the Convolutional Siamese network.


2021 ◽  
pp. 364-376
Author(s):  
Trung Tan Ngo ◽  
Hung Tuan Nguyen ◽  
Nam Tuan Ly ◽  
Masaki Nakagawa

2021 ◽  
Author(s):  
Rehaan Sajjad Arai ◽  
Skanda Shanubog A ◽  
Rithik Jain ◽  
Pushkar Kumar ◽  
Krupashankari Sandyal

Offline Handwritten Text Recognition (HTR) is one of the most interesting challenges in today's date in the field of Image processing. This paper introduces a novel technique to recognize the handwritten text by using Convolutional Recurrent Neural Network along with Connectionist Temporal Classification. This model makes use of the IAM dataset. Offline Signature Verification (SV) is another challenging task in the field of biometrics. This paper demonstrates a novel technique to verify the signature as an original or forged one, and makes use of the Convolutional Siamese network.


Handwritten text recognition is a laborious task because humans can write a similar message in numerous ways or due to huge diversity in individual’s style of writing. The performance of text recognition systems implemented as neural networks has better results and accuracy than normal traditional classifiers. In this paper we explore the methods used to recognize and detect handwritten text or words in different languages. The major method used to recognize text is the Convolutional neural network (CNN) as a deep learning classifier. The other techniques used are Recurrent Neural Network (RNN) and a custom developed model called deep-writer, which is a variant of CNN architecture.


Author(s):  
Jebaveerasingh Jebadurai ◽  
Immanuel Johnraja Jebadurai ◽  
Getzi Jeba Leelipushpam Paulraj ◽  
Sushen Vallabh Vangeepuram

Sign in / Sign up

Export Citation Format

Share Document