Economic Model Predictive Control of Microgrid Connected Photovoltaic-Diesel Generator backup Energy System Considering Demand side Management

Author(s):  
Patrick K. Ndwali ◽  
Jackson G. Njiri ◽  
Evan M. Wanjiru
Author(s):  
Mohamadou Nassourou ◽  
Joaquim Blesa ◽  
Vicenç Puig

The problem of energy dispatch in heterogeneous complex systems such as smart grids cannot be efficiently addressed using classical control or ad hoc methods. This article discusses the application of economic model predictive control to the management of a smart micro-grid system connected to an electrical power grid. The considered system is composed of several subsystems, namely, some photovoltaic panels, a wind generator, a hydroelectric generator, a diesel generator, and some storage devices (batteries). The batteries are charged with the energy from the photovoltaic panels, wind and hydroelectric generators, and they are discharged whenever the generators produce less energy than needed. The subsystems are interconnected via a DC Bus, from which load demands are satisfied. Modeling smart grids components is based on the generalized flow-based networked systems paradigm, and assuming energy generators to be stable, load demands and energy prices are known. This study shows that economic model predictive control is economically superior to a two-layer hierarchical model predictive control.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3921
Author(s):  
Tobias Kull ◽  
Bernd Zeilmann ◽  
Gerhard Fischerauer

The increasing share of distributed renewable energy resources (DER) in the grid entails a paradigm shift in energy system operation demanding more flexibility on the prosumer side. In this work we show an implementation of linear economic model predictive control (MPC) for flexible microgrid dispatch based on time-variable electricity prices. We focus on small and medium enterprises (SME) where information and communications technology (ICT) is available on an industrial level. Our implementation uses field devices and is evaluated in a hardware-in-the-loop (HiL) test bench to achieve high technological maturity. We use available forecasting techniques for power demand and renewable energy generation and evaluate their influence on energy system operation compared to optimal operation under perfect knowledge of the future and compared to a status-quo operation strategy without control. The evaluation scenarios are based on an extensive electricity price analysis to increase representativeness of the simulation results and are based on the use of historic real-world measurements in an existing production facility. Due to real-world restrictions (imperfect forecast knowledge, implementation on field hardware, power fluctuations), between 72.2% and 85.5% of the economic optimum (rather than 100%) is reached. Together with reduced operation cost, the economic MPC implementation on field-typical industrial ICT leads to an increased share of renewable energy demand.


Sign in / Sign up

Export Citation Format

Share Document