scholarly journals Solving high-dimensional Hamilton–Jacobi–Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space

Author(s):  
Nikolas Nüsken ◽  
Lorenz Richter

AbstractOptimal control of diffusion processes is intimately connected to the problem of solving certain Hamilton–Jacobi–Bellman equations. Building on recent machine learning inspired approaches towards high-dimensional PDEs, we investigate the potential of iterative diffusion optimisation techniques, in particular considering applications in importance sampling and rare event simulation, and focusing on problems without diffusion control, with linearly controlled drift and running costs that depend quadratically on the control. More generally, our methods apply to nonlinear parabolic PDEs with a certain shift invariance. The choice of an appropriate loss function being a central element in the algorithmic design, we develop a principled framework based on divergences between path measures, encompassing various existing methods. Motivated by connections to forward-backward SDEs, we propose and study the novel log-variance divergence, showing favourable properties of corresponding Monte Carlo estimators. The promise of the developed approach is exemplified by a range of high-dimensional and metastable numerical examples.

2018 ◽  
Vol 115 (34) ◽  
pp. 8505-8510 ◽  
Author(s):  
Jiequn Han ◽  
Arnulf Jentzen ◽  
Weinan E

Developing algorithms for solving high-dimensional partial differential equations (PDEs) has been an exceedingly difficult task for a long time, due to the notoriously difficult problem known as the “curse of dimensionality.” This paper introduces a deep learning-based approach that can handle general high-dimensional parabolic PDEs. To this end, the PDEs are reformulated using backward stochastic differential equations and the gradient of the unknown solution is approximated by neural networks, very much in the spirit of deep reinforcement learning with the gradient acting as the policy function. Numerical results on examples including the nonlinear Black–Scholes equation, the Hamilton–Jacobi–Bellman equation, and the Allen–Cahn equation suggest that the proposed algorithm is quite effective in high dimensions, in terms of both accuracy and cost. This opens up possibilities in economics, finance, operational research, and physics, by considering all participating agents, assets, resources, or particles together at the same time, instead of making ad hoc assumptions on their interrelationships.


2021 ◽  
Vol 43 (2) ◽  
pp. A1221-A1247
Author(s):  
Tenavi Nakamura-Zimmerer ◽  
Qi Gong ◽  
Wei Kang

Author(s):  
Sudeep Kundu ◽  
Karl Kunisch

AbstractPolicy iteration is a widely used technique to solve the Hamilton Jacobi Bellman (HJB) equation, which arises from nonlinear optimal feedback control theory. Its convergence analysis has attracted much attention in the unconstrained case. Here we analyze the case with control constraints both for the HJB equations which arise in deterministic and in stochastic control cases. The linear equations in each iteration step are solved by an implicit upwind scheme. Numerical examples are conducted to solve the HJB equation with control constraints and comparisons are shown with the unconstrained cases.


Sign in / Sign up

Export Citation Format

Share Document