Induction of non-bilayer lipid phase separations in chloroplast thylakoid membranes by compatible co-solutes and its relation to therthermal stability of Photosystem II

1992 ◽  
Vol 1099 (2) ◽  
pp. 137-144 ◽  
Author(s):  
W.P. Williams ◽  
A.P.R. Brain ◽  
P.J. Dominy
1993 ◽  
Vol 48 (3-4) ◽  
pp. 163-167
Author(s):  
Koichi Yoneyama ◽  
Yoshihiro Nakajima ◽  
Masaru Ogasawara ◽  
Hitoshi Kuramochi ◽  
Makoto Konnai ◽  
...  

Abstract Through the studies on structure-activity relationships of 5-acyl-3-(1-aminoalkylidene)-4-hydroxy-2 H-pyran-2,6(3 H)-dione derivatives in photosystem II (PS II) inhibition, overall lipophilicity of the molecule was found to be a major determinant for the activity. In the substituted N -benzyl derivatives, not only the lipophilicity but also the electronic and steric characters of the substituents greatly affected the activity. Their mode of PS II inhibition seemed to be similar to that of DCMU , whereas pyran-enamine derivatives needed to be highly lipophilic to block the electron transport in thylakoid membranes, which in turn diminished the permeability through biomembranes.


Author(s):  
Faiza Bashir ◽  
Ateeq Ur Rehman ◽  
Milán Szabó ◽  
Imre Vass

AbstractSinglet oxygen (1O2) is an important damaging agent, which is produced during illumination by the interaction of the triplet excited state pigment molecules with molecular oxygen. In cells of photosynthetic organisms 1O2 is formed primarily in chlorophyll containing complexes, and damages pigments, lipids, proteins and other cellular constituents in their environment. A useful approach to study the physiological role of 1O2 is the utilization of external photosensitizers. In the present study, we employed a multiwell plate-based screening method in combination with chlorophyll fluorescence imaging to characterize the effect of externally produced 1O2 on the photosynthetic activity of isolated thylakoid membranes and intact Chlorella sorokiniana cells. The results show that the external 1O2 produced by the photosensitization reactions of Rose Bengal damages Photosystem II both in isolated thylakoid membranes and in intact cells in a concentration dependent manner indicating that 1O2 plays a significant role in photodamage of Photosystem II.


2019 ◽  
Vol 166 (1) ◽  
pp. 278-287 ◽  
Author(s):  
Bettina Ughy ◽  
Václav Karlický ◽  
Ondřej Dlouhý ◽  
Uroš Javornik ◽  
Zuzana Materová ◽  
...  

Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 517-522 ◽  
Author(s):  
Michael P. Anderson ◽  
Curtis N. Bensch ◽  
Jimmy F. Stritzke

This paper reports on a microtitre plate version of the 2,6-dichlorophenol-indophenol (DCPIP) reduction assay. DCPIP reduction rates of alfalfa thylakoid membranes were determined by measuring absorbance at 600 nm before and after a 1 min illumination period. The membranes were near light-saturated at intensities above 600 μE m–2s–1. Saturation of thylakoid membranes with DCPIP occurred above 120 μM. DCPIP reduction rates increased linearly with chlorophyll concentrations from 0.25 to 2 μg. The rate of DCPIP reduction was linear throughout a 2 min illumination period (R2= 0.99). The assay was sensitive enough to terbacil to differentiate between a 20% change in the I50concentration. DCPIP reduction rates were sensitive to concentrations of terbacil as low as 100 nM. It only takes 13 minutes to load and read 96 samples using the microtitre plate assay compared to 5.5 h using the conventional procedure.


Sign in / Sign up

Export Citation Format

Share Document