Analysis of two chloride requirements for sodium-dependent amino acid and glucose transport by intestinal brush-border membrane vesicles of fish

1983 ◽  
Vol 729 (2) ◽  
pp. 209-218 ◽  
Author(s):  
Gérard Bogé ◽  
Alain Rigal ◽  
Gabriel Pérès
1989 ◽  
Vol 48 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Maria Teresa Vicenzini ◽  
Teresa Iantomasi ◽  
Maria Stio ◽  
Fabio Favilli ◽  
Paolo Vanni ◽  
...  

1980 ◽  
Vol 239 (6) ◽  
pp. G452-G456
Author(s):  
R. C. Beesley ◽  
C. D. Bacheller

Brush-border membrane vesicles from hamster intestine were employed to investigate uptake (binding) of vitamin B12 (B12). Ileal vesicles took up 25 times more B12 than did jejunal vesicles. Uptake of B12 by ileal vesicles was dependent on intrinsic factor (IF) and required Ca2+. Increasing the Ca2+ concentration caused an increase in uptake of B12 reaching a maximum at approximately 8 mM Ca2+. At high Ca2+ concentrations, 6–8 mM, Mg2+ had little effect on uptake of B12. At low Ca2+ concentrations, up to 2 mM, Mg2+ stimulated B12 uptake. Mg2+, Mn2+, and, to a lesser extent, Sr2+ stimulated Ca2+-dependent B12 uptake, but Zn2+, Ba2+, Na+, K+, and La3+ did not. B12 was apparently not metabolized and was bound as IF-B12 complex, which could be removed with (ethylenedinitrilo)tetraacetic acid (EDTA). Our results suggest that two types of divalent cation reactive sites are involved in binding of IF-B12. One is Ca2+ specific. The other is less specific reacting with Mg2+, Mn2+, Sr2+, and perhaps Ca2+ itself, thereby stimulating Ca2+-dependent binding of IF-B12 to its ileal receptor.


Sign in / Sign up

Export Citation Format

Share Document