brush border membrane vesicles
Recently Published Documents


TOTAL DOCUMENTS

855
(FIVE YEARS 7)

H-INDEX

46
(FIVE YEARS 2)

Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Daniel Pinos ◽  
Yueqin Wang ◽  
Patricia Hernández-Martínez ◽  
Kanglai He ◽  
Juan Ferré

The Asian corn borer, Ostrinia furnacalis (Guenée, 1854), is a highly damaging pest in Asia and the Pacific islands, and larvae feed mainly from corn crops. To determine the suitability of Bt-corn technology for the future control of this pest, understanding the potential to develop resistance to Cry1Ab and the basis of cross-resistance to other Cry1 proteins is of great interest. Here, we have explored the binding of Cry1A proteins to brush border membrane vesicles from two O. furnacalis colonies, one susceptible (ACB-BtS) and one laboratory-selected with Cry1Ab (ACB-AbR). The insects developed resistance to Cry1Ab and showed cross-resistance to Cry1Aa, Cry1Ac, and Cry1F. Binding assays with radiolabeled Cry1Ab and brush border membrane vesicles from susceptible insects showed that Cry1A proteins shared binding sites, though the results were not conclusive for Cry1F. The results were confirmed using radiolabeled Cry1Aa. The resistant insects showed a reduction of the specific binding of both Cry1Ab and Cry1Aa, suggesting that part of the binding sites were lost or altered. Competition binding assays showed full competition between Cry1Ab and Cry1Aa proteins in the susceptible colony but only partial competition in resistant insects, confirming the alteration of some, but not all, binding sites for these two proteins. The binding site model for Cry1A proteins in O. furnacalis is in agreement with the occurrence of multiple membrane receptors for these proteins.


Author(s):  
Yudong Quan ◽  
Maria Lázaro-Berenguer ◽  
Patricia Hernández-Martínez ◽  
Juan Ferré

Vegetative insecticidal proteins (Vip3) from Bacillus thuringiensis have been used, in combination with Cry proteins, to better control insect pests and as a strategy to delay the evolution of resistance to Cry proteins in Bt crops (crops protected from insect attack by the expression of proteins from B. thuringiensis ). In this study, we have set up the conditions to analyze the specific binding of 125 I-Vip3Af to Spodoptera frugiperda and Spodoptera exigua brush border membrane vesicles (BBMV). Heterologous competition binding experiments revealed that Vip3Aa shares the same binding sites with Vip3Af, but that Vip3Ca does not recognize all of them. As expected, Cry1Ac and Cry1F did not compete for Vip3Af binding sites. By trypsin treatment of selected alanine-mutants, we were able to generate truncated versions of Vip3Af. Their use as competitors with 125 I-Vip3Af indicated that only those molecules containing domains I to III (DI-III and DI-IV) were able to compete with the trypsin-activated Vip3Af protein for binding, and that molecules only containing either domain IV or domains IV and V (DIV and DIV-V) were unable to compete with Vip3Af. These results were further confirmed with competition binding experiments using 125 I-DI-III. In addition, the truncated protein 125 I-DI-III also bound specifically to Sf21 cells. Cell viability assays showed that the truncated proteins DI-III and DI-IV were as toxic to Sf21 cells as the activated Vip3Af, suggesting that domains IV and V are not necessary for the toxicity to Sf21 cells, in contrast to their requirement in vivo. IMPORTANCE This study shows that Vip3Af binding sites are fully shared with Vip3Aa, only partially shared with Vip3Ca, and not shared with Cry1Ac and Cry1F in two Spodoptera spp. Truncated versions of Vip3Af revealed that only domains I to III were necessary for the specific binding, most likely because they can form the functional tetrameric oligomer and because domain III is supposed to contain the binding epitopes. In contrast to results obtained in vivo (bioassays against larvae), domains IV and V are not necessary for the ex vivo toxicity to Sf21 cells.


2021 ◽  
Vol 139 ◽  
pp. 109940
Author(s):  
Lesbia Cristina Julio-Gonzalez ◽  
F. Javier Moreno ◽  
María Luisa Jimeno ◽  
Elisa G. Doyagüez ◽  
Agustín Olano ◽  
...  

Toxins ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 133 ◽  
Author(s):  
Ayda Khorramnejad ◽  
Mikel Domínguez-Arrizabalaga ◽  
Primitivo Caballero ◽  
Baltasar Escriche ◽  
Yolanda Bel

Bacillus thuringiensis (Bt) produces insecticidal proteins that are either secreted during the vegetative growth phase or accumulated in the crystal inclusions (Cry proteins) in the stationary phase. Cry1I proteins share the three domain (3D) structure typical of crystal proteins but are secreted to the media early in the stationary growth phase. In the generally accepted mode of action of 3D Cry proteins (sequential binding model), the formation of an oligomer (tetramer) has been described as a major step, necessary for pore formation and subsequent toxicity. To know if this could be extended to Cry1I proteins, the formation of Cry1Ia oligomers was studied by Western blot, after the incubation of trypsin activated Cry1Ia with insect brush border membrane vesicles (BBMV) or insect cultured cells, using Cry1Ab as control. Our results showed that Cry1Ia oligomers were observed only after incubation with susceptible coleopteran BBMV, but not following incubation with susceptible lepidopteran BBMV or non-susceptible Sf21 insect cells, while Cry1Ab oligomers were persistently detected after incubation with all insect tissues tested, regardless of its host susceptibility. The data suggested oligomerization may not necessarily be a requirement for the toxicity of Cry1I proteins.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lesbia Cristina Julio-Gonzalez ◽  
Oswaldo Hernandez-Hernandez ◽  
F. Javier Moreno ◽  
Agustín Olano ◽  
Maria Luisa Jimeno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document