Uridine diphosphate glucose pyrophosphorylase: differential heat inactivation and further characterization of human liver enzyme

1974 ◽  
Vol 364 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Richard L. Turnquist ◽  
Marlys M. Turnquist ◽  
Robert C. Bachmann ◽  
R.Gaurth Hansen
1974 ◽  
Vol 142 (1) ◽  
pp. 153-159 ◽  
Author(s):  
Jennifer Kemp ◽  
Brian C. Loughman

Short-chained sugar compounds, thought to be involved in the synthesis of callose, were formed in small amounts from UDP-glucose by soluble extracts from hypocotyls of seedlings of Phaseolus aureus. The properties of the glycosides were investigated by treatment with various chemicals and analysis by paper chromatography, g.l.c. and mass spectrometry. The data obtained support the characterization of these compounds as myoinositol-β-glucoside and diglucosylmyoinositol. The cyclitol moiety was provided by the enzyme extract. Free myoinositol was not the immediate substrate but a compound containing myoinositol, isolated from the enzyme extract, may be involved. The method of synthesis of these glucosides is compared with that of other cyclitol glycosides.


1967 ◽  
Vol 105 (2) ◽  
pp. 515-519 ◽  
Author(s):  
V. N. Nigam

Comparative time-course studies of glycogen synthesis from glucose 6-phosphate, glucose 1-phosphate and UDP-glucose show that glucose 1-phosphate forms glycogen at an initial rate faster than that obtained with glucose 6-phosphate and UDP-glucose. After 5min. the rates from glucose monophosphates are considerably slower. 2,4-Dinitrophenol decreases glycogen synthesis from both glucose monophosphates, whereas arsenate and EDTA increase glycogen synthesis from glucose 1-phosphate and inhibit the reaction from glucose 6-phosphate, galactose and galactose 1-phosphate. Mitochondria-free pigeon liver cytoplasmic fraction forms less glycogen from glucose monophosphates than does the whole homogenate. 2-Deoxyglucose 6-phosphate inhibits glycogen synthesis from glucose monophosphates. Glycogen formation from UDP-glucose is relatively unaffected by dinitrophenol, by arsenate, by EDTA, by 2-deoxyglucose 6-phosphate and by the removal of mitochondria from the whole homogenate.


1967 ◽  
Vol 105 (3) ◽  
pp. 943-946 ◽  
Author(s):  
J. S. Hawker

1. By using EDTA in reaction mixtures it was possible to determine the activity of sucrose phosphate synthetase in freshly prepared leaf extracts without the complications caused by sucrose phosphatase. 2. EDTA was found also to increase the activity of sucrose phosphate synthetase by as much as 100%. 3. High sucrose phosphate synthetase activities were found in leaf preparations in which sucrose phosphatase was inhibited by EDTA. By contrast with previous reports, the activities were sufficient to allow sucrose synthesis in leaves during photosynthesis to occur via sucrose phosphate. 4. Sugar-cane plants having different rates of photosynthesis also had different activities of sucrose phosphate synthetase in their leaves. 5. It is suggested that the activity of sucrose phosphate synthetase in leaves may play a role in the control of the rate of photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document